cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A065773 Number of divisors of square of true prime powers arising in A065405.

This page as a plain text file.
%I A065773 #24 Jan 31 2025 04:21:41
%S A065773 5,7,7,5,13,7,5,17,5,19,5,13,5,5,7,11,7,5,5,5,13,5,7,31,5,5,5,5,5,5,
%T A065773 13,5,5,5,5,5,7,5,5,5,5,5,7,7,5,5,5,5,5,11,5,5,5,5,5,5,5,5,5,7,5,5,5,
%U A065773 7,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,7,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5
%N A065773 Number of divisors of square of true prime powers arising in A065405.
%H A065773 Amiram Eldar, <a href="/A065773/b065773.txt">Table of n, a(n) for n = 1..500</a>
%F A065773 a(n) = A000005(A065405(n)^2).
%F A065773 If A065405(n) = q^c, a prime-power, then sigma(q^(2c)) = A000203(q^(2c)) = (-1 + q^(2c+1))/(q-1) = (-1 + q^A000005(A065405(n)^2))/(q-1) also a prime, from A065403.
%e A065773 For k = 3125, tau(k^2) = 11, sigma(k^2) = 12207031 = (5^(tau(k^2)) - 1)/4 = A065403(16) is also a prime.
%t A065773 DivisorSigma[0, Select[Range[10^5], ! PrimeQ[#] && PrimeQ[DivisorSigma[1, #^2]] &]^2] (* _Amiram Eldar_, Jan 31 2025 *)
%o A065773 (PARI) { n=0; for (m=1, 10^9, if (isprime(m), next); x=sigma(m^2); if (isprime(x), a=numdiv(m^2); write("b065773.txt", n++, " ", a); if (n==100, return)) ) } \\ _Harry J. Smith_, Oct 30 2009
%Y A065773 Cf. A000005, A065405, A000203, A065403, A065771, A065772, A025475.
%K A065773 nonn
%O A065773 1,1
%A A065773 _Labos Elemer_ and _Robert G. Wilson v_, Nov 19 2001