cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A065797 Numbers k such that k^k - k + 1 is prime.

This page as a plain text file.
%I A065797 #53 Aug 11 2025 10:25:14
%S A065797 2,5,13,155,1551,1841,2167,2560
%N A065797 Numbers k such that k^k - k + 1 is prime.
%C A065797 The Mathematica program tests for probable primality. It is unclear which of the numbers k^k - k + 1 have been proved prime. - _Dean Hickerson_, Apr 26 2003
%C A065797 The first four terms result from deterministic primality tests, while terms >= 156 currently correspond to probable primes. - _Giuseppe Coppoletta_, Dec 26 2014
%C A065797 If it exists, a(9) > 32000. - _Dmitry Petukhov_, Sep 12 2021
%H A065797 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PrimalityTest.html">Primality Test</a>
%p A065797 select(n -> isprime(n^n-n+1), [$1..3000]); # _Robert Israel_, Dec 29 2014
%t A065797 Do[If[PrimeQ[n^n-n+1], Print[n]], {n, 1, 3000}]
%o A065797 (Sage) [n for n in (1..155) if (n^n-n+1).is_prime(proof=True)]
%o A065797 # deterministic test
%o A065797 (Sage) [n for n in (1..5000) if (n^n-n+1).is_prime(proof=False)]
%o A065797 # probabilistic test _Giuseppe Coppoletta_, Dec 26 2014
%o A065797 (PARI) is(n)=ispseudoprime(n^n-n+1) \\ _Charles R Greathouse IV_, Jun 13 2017
%Y A065797 Cf. A058911 (k^k+k+1), A182383 (corresponding primes, including 2 for k=0).
%K A065797 nonn,more
%O A065797 1,1
%A A065797 _Robert G. Wilson v_, Dec 05 2001
%E A065797 More terms from John Sillcox (JMS21187(AT)aol.com), Apr 23 2003