This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A065802 #14 Dec 25 2019 15:31:44 %S A065802 3,5,9,13,19,24,32,38,48,56,67,77,90,102,116,129,145,160,178,194,213, %T A065802 231,252,272,294,316,340,363,388,413,440,466,495,523,554,583,615,646, %U A065802 680,713,748,782,820,855,894,932,972,1011,1053,1094,1137,1180,1225 %N A065802 How small is the squeezed n-gon? Let s0 be the side of a regular n-gon and s1 the side of the maximal n-gon which can be squeezed between the former and its circumcircle. The n-th entry in the sequence is floor(s0/s1). %C A065802 Closely related to K(n) = (2*n/Pi)*sin(Pi/n)/(1-cos(Pi/n)) as derived from the n-gon with same circumference as the circle squeezed between the large n-gon and its circumcircle. %H A065802 Robert Israel, <a href="/A065802/b065802.txt">Table of n, a(n) for n = 3..10000</a> %H A065802 Bill Taylor, Ignacio Larrosa CaƱestro, Rainer Rosenthal, <a href="https://groups.google.com/d/msg/sci.math/B-oYg5fBSvs/IoMzfdUGC3EJ">Little Geometry Problem</a>, thread in newsgroup sci.math, Oct 31 - Nov 06, 2001. %F A065802 For n=odd: a(n) = floor((1+cos(Pi/n))/(1-cos(Pi/n))) For n=even: a(n) = floor( 2*(2/(tan(Pi/n))^2) + 1 ) %F A065802 a(n) = floor(4*n^2/Pi^2) - b(n) where b(n) is in {0,1,2}; 0 occurs only for odd n, while 2 occurs only for even n. - _Robert Israel_, Oct 24 2017 %e A065802 a(3) = 3 as can be seen in Christmas stars: cos(Pi/3)=1/2, thus a(3) = floor((3/2)/(1/2)) = 3. a(4) = 5 as proposed by Bill Taylor in sci.math: tan(Pi/4)=1, thus a(4) = floor(2*(2/1^2) + 1) = 5. %p A065802 f:= proc(n) if n::odd then floor((1+cos(Pi/n))/(1-cos(Pi/n))) else floor(2*(2/(tan(Pi/n))^2) + 1) fi end proc: %p A065802 map(f, [$3..100]); # _Robert Israel_, Oct 24 2017 %t A065802 f[n_] := If[ OddQ[n], Floor[(1 + Cos[Pi/n]) / (1 - Cos[Pi/n])], Floor[4/(Tan[Pi/n])^2 + 1] ]; Table[ f[n], {n, 3, 60} ] %Y A065802 Cf. A055684. %K A065802 easy,nice,nonn %O A065802 3,1 %A A065802 _Rainer Rosenthal_, Dec 05 2001 %E A065802 More terms from _Robert G. Wilson v_, Dec 06 2001