A065809 a(n) is the smallest number m > n such that m is palindromic in base n and is not palindromic in bases b with 2 <= b < n.
3, 4, 25, 6, 14, 32, 54, 30, 11, 84, 39, 140, 75, 176, 102, 198, 19, 220, 147, 110, 69, 384, 175, 416, 486, 420, 58, 570, 279, 544, 429, 306, 245, 684, 296, 380, 663, 880, 615, 1134, 258, 1012, 1035, 1104, 47, 1392, 539, 1500, 1071, 1508, 53, 2106
Offset: 2
Examples
From _Robert G. Wilson v_, Dec 22 2021: (Start) a(2) = 3 since A016026(3) = 2; a(3) = 4 since A016026(4) = 3; a(4) = 25 since A016026(25) = 4; etc. (End)
Links
- Robert G. Wilson v, Table of n, a(n) for n = 2..10000 (first 441 terms from Robert Israel).
Programs
-
Maple
N:= 100: f:= proc(m) local k,L; for k from 2 to m do L:= convert(m,base,k); if L = ListTools:-Reverse(L) then return k fi od; FAIL end proc: V:= Array(2..N): count:= 0: for m from 3 while count < N-1 do v:= f(m); if v = FAIL or v > N then next fi; if V[v] = 0 then count:= count+1; V[v]:= m; fi od: convert(V,list); # Robert Israel, Apr 08 2019
-
Mathematica
fpb = Compile[{{n, Integer}}, Module[{b = 2, idn}, While[ Reverse[idn = IntegerDigits[n, b]] != idn, b++]; b]]; k = 3; t[] := 0; While[k < 2200, a = fpb@ k; If[ t[a] == 0, t[a] = k]; k++]; t@# & /@ Range[2, 53] (* Robert G. Wilson v, Dec 22 2021 *)
Extensions
Definition edited by N. J. A. Sloane, Apr 08 2019
Comments