This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A065844 #44 Jun 23 2024 21:42:05 %S A065844 1,2,2,4,7,19,42,102,252,532,1226,3681,9100,24858,61943,161857,392935, %T A065844 1167208,3125539,8879693,23143081,63028550,161146767,480399716, %U A065844 1325189141,3815350317,10255072974 %N A065844 Let u be any string of n digits from {0,1,2}; let f(u) = number of distinct primes, not beginning with 0, formed by permuting the digits of u to a base-3 number; then a(n) = max_u f(u). %C A065844 a(25) >= 1325189141 via permutations of numbers with eight 0's, nine 1's and eight 2's. If some permutation class gives a larger number of primes then it's smallest element is lexicographically larger than 1000000001111111111111222. Permutation class 1000000011111111222222222 gives fewer primes than 1325189141. - _David A. Corneth_, May 31 2024 %e A065844 a(2)=2 because 12 and 21 (written in base 3) are primes (5 and 7). %p A065844 A065844 := proc(n) %p A065844 local b,u,udgs,uperm,a; %p A065844 b :=3 ; %p A065844 a := 0 ; %p A065844 for u from b^(n-1) to b^n-1 do %p A065844 udgs := convert(u,base,b) ; %p A065844 prs := {} ; %p A065844 for uperm in combinat[permute](udgs) do %p A065844 if op(-1,uperm) <> 0 then %p A065844 p := add( op(i,uperm)*b^(i-1),i=1..nops(uperm)) ; %p A065844 if isprime(p) then %p A065844 prs := prs union {p} ; %p A065844 end if; %p A065844 end if; %p A065844 end do: %p A065844 a := max(a,nops(prs)) ; %p A065844 end do: %p A065844 a ; %p A065844 end proc: %p A065844 for n from 1 do %p A065844 print(n,A065844(n)) ; %p A065844 end do: # _R. J. Mathar_, Apr 23 2016 %t A065844 c[x_] := Module[{}, %t A065844 Length[Select[Permutations[x], %t A065844 First[#] != 0 && PrimeQ[FromDigits[#, 3]] &]]]; %t A065844 A065844[n_] := Module[{i}, %t A065844 Return[Max[Map[c, DeleteDuplicatesBy[Tuples[Range[0, 2], n], %t A065844 Table[Count[#, i], {i, 0, 2}] &]]]]]; %t A065844 Table[A065844[n], {n, 1, 13}] (* _Robert Price_, Mar 30 2019 *) %Y A065844 Cf. A055729, A065843, A065845, A065846, A065847, A065848, A065849, A065850, A065851, A065852, A065853 %K A065844 base,nonn,more %O A065844 1,2 %A A065844 _Sascha Kurz_, Nov 24 2001 %E A065844 3 more terms from _Sean A. Irvine_, Sep 06 2009 %E A065844 Definition corrected by _David A. Corneth_, Apr 23 2016 %E A065844 a(23)-a(24) from _Michael S. Branicky_, May 30 2024 %E A065844 a(25) confirmed by _Michael S. Branicky_, Jun 03 2024 %E A065844 a(26) from _Michael S. Branicky_, Jun 08 2024 %E A065844 a(27) from _Michael S. Branicky_, Jun 23 2024