This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A065846 #31 Jul 08 2024 10:38:58 %S A065846 1,2,4,7,26,87,226,800,2424,9975,40045,152852,626232,2317403,9962949, %T A065846 43599477,179247754,777881238 %N A065846 Let u be any string of n digits from {0,...,4}; let f(u) = number of distinct primes, not beginning with 0, formed by permuting the digits of u to a base-5 number; then a(n) = max_u f(u). %e A065846 a(2)=2 because 12 and 21 (written in base 5) are primes (7 and 11). %p A065846 A065846 := proc(n) %p A065846 local b,u,udgs,uperm,a; %p A065846 b :=5 ; %p A065846 a := 0 ; %p A065846 for u from b^(n-1) to b^n-1 do %p A065846 udgs := convert(u,base,b) ; %p A065846 prs := {} ; %p A065846 for uperm in combinat[permute](udgs) do %p A065846 if op(-1,uperm) <> 0 then %p A065846 p := add( op(i,uperm)*b^(i-1),i=1..nops(uperm)) ; %p A065846 if isprime(p) then %p A065846 prs := prs union {p} ; %p A065846 end if; %p A065846 end if; %p A065846 end do: %p A065846 a := max(a,nops(prs)) ; %p A065846 end do: %p A065846 a ; %p A065846 end proc: %p A065846 for n from 1 do %p A065846 print(n,A065846(n)) ; %p A065846 end do: # _R. J. Mathar_, Apr 23 2016 %t A065846 c[x_] := Module[{}, %t A065846 Length[Select[Permutations[x], %t A065846 First[#] != 0 && PrimeQ[FromDigits[#, 5]] &]]]; %t A065846 A065846[n_] := Module[{i}, %t A065846 Return[Max[Map[c, DeleteDuplicatesBy[Tuples[Range[0, 4], n], %t A065846 Table[Count[#, i], {i, 0, 4}] &]]]]]; %t A065846 Table[A065846[n], {n, 1, 9}] (* _Robert Price_, Mar 30 2019 *) %Y A065846 Cf. A065843, A065844, A065845, A065847, A065848, A065849, A065850, A065851, A065852, A065853. %K A065846 base,more,nonn %O A065846 1,2 %A A065846 _Sascha Kurz_, Nov 24 2001 %E A065846 2 more terms from _Sean A. Irvine_, Sep 06 2009 %E A065846 Definition corrected by _David A. Corneth_, Apr 23 2016 %E A065846 a(16) from _Michael S. Branicky_, May 29 2024 %E A065846 a(17) from _Michael S. Branicky_, Jun 26 2024 %E A065846 a(18) from _Michael S. Branicky_, Jul 08 2024