This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A065884 #11 Aug 12 2024 12:02:42 %S A065884 323,899,1763,5249,3239,979801,5459,10763,9179,9701,10403,12319, %T A065884 5646547,24569,19109,19043,22499,50819,41309,32639,46979,34579,39059, %U A065884 125969,49769,49949,154559,48554797,114953,52532203,56624063,195499,75077,79799,72899 %N A065884 a(n) = A065824(A047845(n+1)). %C A065884 By definition (m+1)*phi(a(n)) = m*sigma(a(n)) where m=A065824(n+1). %e A065884 A065824(4) = 323, so a(1) = A065824[A047845(1+1)] = 323 A065824(16) = 979801 and a(6) = 979801 = A065824[A047845(1+6)] %o A065884 (Python) %o A065884 from math import prod %o A065884 from itertools import count %o A065884 from sympy import factorint, primepi %o A065884 def A065884(n): %o A065884 m, k = n, primepi(n+1) + n + (n+1>>1) %o A065884 while m != k: %o A065884 m, k = k, primepi(k) + n + (k>>1) %o A065884 m = m-1>>1 %o A065884 for k in count(1): %o A065884 f = factorint(k) %o A065884 if (m+1)*k*prod((p-1)**2 for p in f)==m*prod(p**(e+2)-p for p,e in f.items()): %o A065884 return k # _Chai Wah Wu_, Aug 12 2024 %Y A065884 Cf. A065824, A047845, A000010, A000203. %K A065884 nonn %O A065884 1,1 %A A065884 _Labos Elemer_, Nov 27 2001 %E A065884 Name corrected and more terms from _Sean A. Irvine_, Sep 17 2023