This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A065922 #19 Aug 17 2017 05:53:50 %S A065922 0,1,27,846,32290,1472535,78444261,4789283212,329976556596, %T A065922 25336918039005,2145912573891295,198763621138900026, %U A065922 19988975122377164982,2169175884299414423251,252661578519463668740745,31442098485128401965118680,4163361054820272025075769896 %N A065922 Bessel polynomial {y_n}'(4). %D A065922 J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77. %H A065922 G. C. Greubel, <a href="/A065922/b065922.txt">Table of n, a(n) for n = 0..330</a> %H A065922 <a href="/index/Be#Bessel">Index entries for sequences related to Bessel functions or polynomials</a> %F A065922 Recurrence: (n-1)^2*a(n) = (2*n - 1)^3*a(n-1) + n^2*a(n-2). - _Vaclav Kotesovec_, Jul 22 2015 %F A065922 a(n) ~ 2^(3*n-3/2) * n^(n+1) / exp(n-1/4). - _Vaclav Kotesovec_, Jul 22 2015 %F A065922 From _G. C. Greubel_, Aug 14 2017: (Start) %F A065922 a(n) = 2*n*(1/2)_{n}*8^(n - 1)* hypergeometric1f1(1 - n, -2*n, 1/2). %F A065922 E.g.f.: ((1 - 8*x)^(3/2) + 4*x*(1 - 8*x)^(1/2) + 24*x - 1)* exp((1 - sqrt(1 - 8*x))/4)/(16*(1 - 8*x)^(3/2)). (End) %F A065922 G.f.: (t/(1-t)^3)*hypergeometric2f0(2,3/2; - ; 8*t/(1-t)^2). - _G. C. Greubel_, Aug 16 2017 %t A065922 Table[Sum[(n+k+1)!*2^(k-1)/((n-k-1)!*k!), {k,0,n-1}], {n,0,20}] (* _Vaclav Kotesovec_, Jul 22 2015 *) %t A065922 RecurrenceTable[{a[0]==0,a[1]==1,a[n]==((2n-1)^3 a[n-1]+n^2 a[n-2])/ (n-1)^2}, a,{n,20}] (* _Harvey P. Dale_, May 23 2016 *) %o A065922 (PARI) for(n=0,50, print1(sum(k=0,n-1, (n+k+1)!*2^(k-1)/((n-k-1)!*k!)), ", ")) \\ _G. C. Greubel_, Aug 14 2017 %Y A065922 Cf. A001514, A065920, A065921. %K A065922 nonn %O A065922 0,3 %A A065922 _N. J. A. Sloane_, Dec 08 2001