This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A065936 #27 Feb 16 2025 08:32:45 %S A065936 0,5,5,0,2,2,0,2,3,0,3,3,0,3,2,5,13,17,2,17,37,5,13,13,5,37,17,2,17, %T A065936 13,5,3,17,3,37,21,13,10,37,3,401,6,13,10,401,0,17,17,0,401,10,13,6, %U A065936 401,3,37,10,13,21,37,3,17,3,0,37,10,0,401,506,17,5,401,37,21610,730,5,1373 %N A065936 a(n) is the integer (reduced squarefree) under the square root obtained when the inverse of a variant of Minkowski's question mark function is applied to the n-th ratio A007305(n+1)/A007306(n+1) in the left-hand subtree of Stern-Brocot tree and zero when it results a rational value. %C A065936 Note: the underlying function N2Qv (see the Maple code) maps natural numbers 1, 2, 3, 4, 5, ..., through all the positive rationals in the open range (0,1): 1/2, 1/3, 2/3, 1/4, 2/5, 3/5, ... bijectively to the union of positive rationals and quadratic surds. A065937 gives similar mapping involving the inverse of the standard Minkowski's question mark function. %C A065936 Note the symmetry of rows 0; 5,5; 0,2,2,0; 2,3,0,3,3,0,3,2; 5,13,17,2,17,37,5,13,13,5,37,17,2,17,13,5; ... emanating from the symmetry present in A007306. %H A065936 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/QuadraticIrrationalNumber.html">Quadratic Irrational Number</a>. %H A065936 <a href="/index/Me#MinkowskiQ">Index entries for sequences related to Minkowski's question mark function</a> %H A065936 <a href="/index/St#Stern">Index entries for sequences related to Stern's sequences</a> %e A065936 The first few values for this mapping are N2Qv(1) = 1, N2Qv(2) = (sqrt(5)-1)/2, N2Qv(3) = (sqrt(5)+1)/2, N2Qv(4) = 1/2, N2Qv(5) = sqrt(2)/2, N2Qv(6) = sqrt(2), N2Qv(7) = 2, N2Qv(8) = sqrt(2)-1 %p A065936 [seq(find_sqrt(N2Qv(j)),j=1..512)]; %p A065936 N2Qv := proc(n) local m; m := n + 2^floor_log_2(n); Inverse_of_Variant_of_MinkowskisQMark(A007305(m+1)/A047679(m-1)); end; %p A065936 Inverse_of_Variant_of_MinkowskisQMark := proc(r) local x,y,b,d,k,s,i,q; x := numer(r); y := denom(r); if(y = 2*x) then RETURN(1); fi; b := []; d := []; k := 0; s := 0; i := 0; while(x <> 0) do q := floor(x/y); if(i > 0) then b := [op(b),q]; d := [op(d),x]; fi; x := 2*(x-(q*y)); if(member(x,d,'k') and (k > 1) and (b[k] <> b[k-1]) and (q <> floor(x/y))) then s := eval_periodic_confrac_tail(list2runcounts(b[k..nops(b)])); b := b[1..(k-1)]; break; fi; i := i+1; od; if(0 = k) then b := b[1..(nops(b)-1)]; b := [op(b),b[nops(b)]]; fi; if(r < (1/2)) then RETURN(factor(eval_confrac([0,op(list2runcounts(b))],s))); else RETURN(factor(eval_confrac(list2runcounts(b),s))); fi; end; %p A065936 eval_confrac := proc(c,z) local x,i; x := z; for i in reverse(c) do x := (`if`((0=x),x,(1/x)))+i; od; RETURN(x); end; %p A065936 eval_periodic_confrac_tail := proc(c) local x,i,u,r; x := (eval_confrac(c,u) - u) = 0; r := [solve(x,u)]; RETURN(max(r[1],r[2])); end; %p A065936 list2runcounts := proc(b) local a,p,y,c; if(0 = nops(b)) then RETURN([]); fi; a := []; c := 0; p := b[1]; for y in b do if(y <> p) then a := [op(a),c]; c := 0; p := y; fi; c := c+1; od; RETURN([op(a),c]); end; %p A065936 find_sqrt := proc(x) local n,i,y; n := nops(x); if(n < 2) then RETURN(0); fi; if((2 = n) and (`^` = op(0,x)) and (1/2 = op(2,x))) then RETURN(op(1,x)); else for i from 0 to n do y := find_sqrt(op(i,x)); if(y <> 0) then RETURN(y); fi; od; RETURN(0); fi; end; %Y A065936 a(n) = A065937(A065934(n)). Positions of the zeros are given by A065810. Positions of sqrt(n) in this mapping: A065938. %K A065936 nonn %O A065936 1,2 %A A065936 _Antti Karttunen_, Dec 07 2001 %E A065936 Description clarified by _Antti Karttunen_, Aug 26 2006