cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A065938 Position of sqrt(n) in the mapping N2QuQR1 given in A065936.

This page as a plain text file.
%I A065938 #6 Feb 16 2025 08:32:45
%S A065938 1,6,14,7,120,248,16160,1019,127,32640,65408,16373,8386032,4194056,
%T A065938 4194239,32767,2147450880,4294934528,4611672824287851743,268435343,
%U A065938 8796091842564,1125899889968159,70368744112268,70368744161279
%N A065938 Position of sqrt(n) in the mapping N2QuQR1 given in A065936.
%H A065938 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ContinuedFraction.html">Continued Fraction.</a>
%p A065938 [seq(frac2position_in_0_1_SB_tree(sqrt_n_confrac2binfrac(j)),j=1..40)];
%p A065938 sqrt_n_confrac2binfrac := proc(n) local c,t; c := CONFRACS_FOR_sqrt_N[n]; t := `if`((1 = nops(c)),[],`if`((0 = (nops(c) mod 2)),[op(c[2..nops(c)]),op(c[2..nops(c)])],c[2..nops(c)])); RETURN( (((2^c[1])-1) + `if`(1 = nops(c),0,(runcounts2binexp0(t) / ((2^(convert(t,`+`)))-1)))) / (2^c[1])); end;
%p A065938 runcounts2binexp0 := proc(c) local i,e,n; n := 0; for i from 0 to nops(c)-1 do e := c[i+1]; n := ((2^e)*n) + ((i mod 2)*((2^e)-1)); od; RETURN(n); end;
%p A065938 CONFRACS_FOR_sqrt_N := [[1], [1, 2], [1, 1, 2], [2], [2, 4], [2, 2, 4], [2, 1, 1, 1, 4], [2, 1, 4], [3], [3, 6], etc., adapted from Weisstein's encyclopedia entry for Continued Fractions]
%Y A065938 Cf. A003285. N2QuQR1(a[n])^2 = n, see A065936. For frac2position_in_0_1_SB_tree see A065658. Cf. also A065939.
%K A065938 nonn
%O A065938 1,2
%A A065938 _Antti Karttunen_, Dec 07 2001