This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A065947 #21 Apr 20 2025 07:52:53 %S A065947 0,0,6,300,13320,620130,31406550,1743174216,105889417200, %T A065947 7010411889690,503353562247360,39003404559533700,3246506259033473436, %U A065947 289042023964190515200,27418894569798460848210,2761554229456140638184840,294364593823858690215256200 %N A065947 Bessel polynomial {y_n}''(3). %D A065947 J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77. %H A065947 G. C. Greubel, <a href="/A065947/b065947.txt">Table of n, a(n) for n = 0..340</a> %H A065947 <a href="/index/Be#Bessel">Index entries for sequences related to Bessel functions or polynomials</a> %F A065947 From _G. C. Greubel_, Aug 14 2017: (Start) %F A065947 a(n) = 4*n*(n - 1)*(1/2)_{n}*6^(n - 2)*hypergeometric1F1(2-n, -2*n, 2/3), where (a)_{n} is the Pochhammer symbol. %F A065947 E.g.f.: (-1/81)*(1 - 6*x)^(-5/2)*((171*x^2 - 90*x + 8)*sqrt(1 - 6*x) + (54*x^3 - 648*x^2 + 114*x - 8))*exp((1 - sqrt(1 - 6*x))/3). (End) %F A065947 G.f.: (6*x^2/(1-x)^5)*hypergeometric2F0(3,5/2; - ; 6*x/(1-x)^2). - _G. C. Greubel_, Aug 16 2017 %t A065947 Join[{0, 0}, Table[4*n*(n - 1)*Pochhammer[1/2, n]*6^(n - 2)* Hypergeometric1F1[2 - n, -2*n, 2/3], {n, 2, 50}]] (* _G. C. Greubel_, Aug 14 2017 *) %o A065947 (PARI) for(n=0,50, print1(sum(k=0,n-2, ((n+k+2)!/(4*k!*(n-k-2)!))*(3/2)^k), ", ")) \\ _G. C. Greubel_, Aug 14 2017 %Y A065947 Cf. A001516, A001518. %K A065947 nonn %O A065947 0,3 %A A065947 _N. J. A. Sloane_, Dec 08 2001