This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A065948 #13 Aug 17 2017 05:50:34 %S A065948 0,0,6,-240,9540,-415590,20134590,-1082674404,64221641820, %T A065948 -4173853100670,295282282905720,-22605059036265420, %U A065948 1862664627479732076,-164425432052147568120,15483794266369962976170,-1549617160894627918342620,164264715996348003982855020 %N A065948 Bessel polynomial {y_n}''(-3). %D A065948 J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77. %H A065948 G. C. Greubel, <a href="/A065948/b065948.txt">Table of n, a(n) for n = 0..340</a> %H A065948 <a href="/index/Be#Bessel">Index entries for sequences related to Bessel functions or polynomials</a> %F A065948 From _G. C. Greubel_, Aug 15 2017: (Start) %F A065948 a(n) = 4*n*(n - 1)*(1/2)_{n}*(-6)^(n - 2)* hypergeometric1f1(2 - n; -2*n; -2/3), where (a)_{n} is the Pochhammer symbol. %F A065948 E.g.f.: (-1/81)*(1 + 6*x)^(-5/2)*((-99*x^2 - 54*x - 4)*sqrt(1 + 6*x) + (-54*x^3 + 66*x + 4))*exp(-(1 - sqrt(1 + 6*x))/3). (End) %F A065948 G.f.: (6*x^2/(1-x)^5)*hypergeometric2f0(3,5/2; - ; -6*x/(1-x)^2). - _G. C. Greubel_, Aug 16 2017 %t A065948 Join[{0, 0}, Table[4*n*(n - 1)*Pochhammer[1/2, n]*(-6)^(n - 2)* Hypergeometric1F1[2 - n, -2*n, -2/3], {n, 2, 50}]] (* _G. C. Greubel_, Aug 15 2017 *) %o A065948 (PARI) for(n=0,50, print1(sum(k=0,n-2, ((n+k+2)!/(4*k!*(n-k-2)!))*(-3/2)^k ), ", ")) \\ _G. C. Greubel_, Aug 15 2017 %Y A065948 Cf. A001518, A001516. %K A065948 sign %O A065948 0,3 %A A065948 _N. J. A. Sloane_, Dec 08 2001