cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A066991 Square array read by descending antidiagonals of number of ways of dividing n*k labeled items into k unlabeled orders with n items in each order.

Original entry on oeis.org

1, 1, 2, 1, 12, 6, 1, 120, 360, 24, 1, 1680, 60480, 20160, 120, 1, 30240, 19958400, 79833600, 1814400, 720, 1, 665280, 10897286400, 871782912000, 217945728000, 239500800, 5040, 1, 17297280, 8892185702400, 20274183401472000
Offset: 1

Views

Author

Henry Bottomley, Feb 01 2002

Keywords

Comments

T(p,k) = (pk)!/k! is divisible by p^k but not p^(k+1) for p prime; e.g., T(3,4) = 3^4*11*10*8*7*5*4*2*1 = 19958400.

Examples

			The array begins:
  n\k|   1        2             3                   4  ...
  --------------------------------------------------------
   1 |   1,       1,            1,                  1, ...
   2 |   2,      12,          120,               1680, ...
   3 |   6,     360,        60480,           19958400, ...
   4 |  24,   20160,     79833600,       871782912000, ...
   5 | 120, 1814400, 217945728000, 101370917007360000, ...
  ...
		

Crossrefs

Rows include A000012, A001813, A064350.
Columns include A000142, A002674, A065961.

Programs

  • Mathematica
    Table[((n-k+1)*k)!/k!, {n, 10}, {k, n, 1, -1}] (* Paolo Xausa, Feb 19 2024 *)

Formula

T(n,k) = (n*k)!/k!.

Extensions

Edited by Paolo Xausa, Feb 19 2024
Showing 1-1 of 1 results.