A066007 a(n) is that n-digit number m which minimizes m/(sum of digits of m); in case of a tie pick the smallest.
1, 19, 199, 1099, 10999, 109999, 1099999, 10999999, 109999999, 1099999999, 10999999999, 109999999999, 1099999999999, 10999999999999, 100999999999999, 1009999999999999, 10099999999999999, 100999999999999999, 1009999999999999999, 10099999999999999999
Offset: 1
Links
- S. W. Golomb, Sums and products of digits, IEEE Information Theory Society Newsletter, 51 (No. 3, Sept. 2001), p. 15.
- S. W. Golomb, Sums and Products of Digits Solutions, IEEE Information Theory Society Newsletter, Vol. 67, No. 1, March 2017, p. 22. Reprint.
Programs
-
Python
def k(r): return (10**r - 1)//9 + r + 2 def a(n): r = 0 while k(r+1) <= n: r += 1 return int('1' + '0'*r + '9'*(n-r-1)) print([a(n) for n in range(1, 21)]) # Michael S. Branicky, Jan 19 2021
Formula
1 followed by 0's followed by 9's; the first time r 0's appear is at n = (10^r-1)/9+r+2.