cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A066012 Highest minimal Lee distance of any Type 4^Z self-dual code of length n over Z/4Z which does not have all Euclidean norms divisible by 8, that is, is strictly Type I. Compare A105681.

This page as a plain text file.
%I A066012 #13 Dec 13 2019 05:17:45
%S A066012 2,2,2,4,2,4,4,4,2,4,4,4,4,6,6,8,6,8,6,8,8,8,10,10
%N A066012 Highest minimal Lee distance of any Type 4^Z self-dual code of length n over Z/4Z which does not have all Euclidean norms divisible by 8, that is, is strictly Type I. Compare A105681.
%H A066012 S. T. Dougherty, M. Harada and P. Solé, <a href="http://academic.uofs.edu/faculty/Doughertys1/publ.htm">Shadow Codes over Z_4</a>, Finite Fields Applic., 7 (2001), 507-529.
%H A066012 P. Gaborit, <a href="http://www.unilim.fr/pages_perso/philippe.gaborit/SD/">Tables of Self-Dual Codes</a>
%H A066012 G. Nebe, E. M. Rains and N. J. A. Sloane, <a href="http://neilsloane.com/doc/cliff2.html">Self-Dual Codes and Invariant Theory</a>, Springer, Berlin, 2006.
%H A066012 E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998; (<a href="http://neilsloane.com/doc/self.txt">Abstract</a>, <a href="http://neilsloane.com/doc/self.pdf">pdf</a>, <a href="http://neilsloane.com/doc/self.ps">ps</a>).
%Y A066012 Cf. A105674, A105675, A105676, A105677, A105678, A016729, A066016, A105681, A105682.
%Y A066012 Cf. A066013 for number of codes. See also A066014-A066017.
%K A066012 nonn,more
%O A066012 1,1
%A A066012 _N. J. A. Sloane_, Dec 11 2001