A066016
Highest minimal Hamming distance of any Type 4^Z self-dual code of length n over Z/4Z.
Original entry on oeis.org
1, 1, 1, 2, 1, 2, 3, 4, 1, 2, 2, 2, 2, 3, 3, 4, 4, 4, 3, 4, 5, 6, 7, 8
Offset: 1
- S. T. Dougherty, M. Harada and P. Solé, Shadow Codes over Z_4, Finite Fields Applic., 7 (2001), 507-529.
- P. Gaborit, Tables of Self-Dual Codes
- W. C. Huffman, On the classification and enumeration of self-dual codes, Finite Fields Applic., 11 (2005), 451-490.
- G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
- E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998; (Abstract, pdf, ps).
A105681
Highest minimal Lee distance of any Type 4^Z self-dual code of length n over Z/4Z.
Original entry on oeis.org
2, 2, 2, 4, 2, 4, 4, 6, 2, 4, 4, 4, 4, 6, 6, 8, 6, 8, 6, 8, 8, 8, 10, 12
Offset: 1
- S. T. Dougherty, M. Harada and P. Solé, Shadow Codes over Z_4, Finite Fields Applic., 7 (2001), 507-529.
- P. Gaborit, Tables of Self-Dual Codes
- W. C. Huffman, On the classification and enumeration of self-dual codes, Finite Fields Applic., 11 (2005), 451-490.
- G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
- E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998; (Abstract, pdf, ps).
A066017
Number of inequivalent codes attaining highest minimal Hamming distance of any Type 4^Z self-dual code of length n over Z/4Z.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 1, 11, 5, 3, 39, 8, 4, 47
Offset: 1
- S. T. Dougherty, M. Harada and P. Solé, Shadow Codes over Z_4, Finite Fields Applic., 7 (2001), 507-529.
- P. Gaborit, Tables of Self-Dual Codes
- W. C. Huffman, On the classification and enumeration of self-dual codes, Finite Fields Applic., 11 (2005), 451-490.
- G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
- E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998; (Abstract, pdf, ps).
A066014
Highest minimal Euclidean norm of any Type 4^Z self-dual code of length n over Z/4Z which does not have all Euclidean norms divisible by 8, that is, is strictly Type I. Compare A105682.
Original entry on oeis.org
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 8, 4, 8, 8, 8, 8, 8, 8, 8, 8, 8, 12, 12
Offset: 1
- S. T. Dougherty, M. Harada and P. Solé, Shadow Codes over Z_4, Finite Fields Applic., 7 (2001), 507-529.
- P. Gaborit, Tables of Self-Dual Codes
- G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
- E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998; (Abstract, pdf, ps).
A066015
Number of codes having highest minimal Euclidean norm of any Type 4^Z self-dual code of length n over Z/4Z which does not have all Euclidean norms divisible by 8, that is, is strictly Type I. Compare A105682.
Original entry on oeis.org
1, 1, 1, 2, 2, 3, 4, 6, 11, 16, 19, 19, 66, 35, 28
Offset: 1
- S. T. Dougherty, M. Harada and P. Solé, Shadow Codes over Z_4, Finite Fields Applic., 7 (2001), 507-529.
- P. Gaborit, Tables of Self-Dual Codes
- G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
- E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998; (Abstract, pdf, ps).
A105688
Number of codes having highest minimal Lee distance of any Type 4^Z self-dual code of length n over Z/4Z.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 1, 11, 5, 3, 39, 8, 1, 15
Offset: 1
- S. T. Dougherty, M. Harada and P. Solé, Shadow Codes over Z_4, Finite Fields Applic., 7 (2001), 507-529.
- P. Gaborit, Tables of Self-Dual Codes
- W. C. Huffman, On the classification and enumeration of self-dual codes, Finite Fields Applic., 11 (2005), 451-490.
- G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
- E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998; (Abstract, pdf, ps).
A105689
Number of codes having highest minimal Euclidean norm of any Type 4^Z self-dual code of length n over Z/4Z.
Original entry on oeis.org
1, 1, 1, 2, 2, 3, 4, 1, 11, 16, 19, 19, 66, 35, 28
Offset: 1
- S. T. Dougherty, M. Harada and P. Solé, Shadow Codes over Z_4, Finite Fields Applic., 7 (2001), 507-529.
- P. Gaborit, Tables of Self-Dual Codes
- W. C. Huffman, On the classification and enumeration of self-dual codes, Finite Fields Applic., 11 (2005), 451-490.
- G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
- E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998; (Abstract, pdf, ps).
A066013
Number of codes having highest minimal Lee distance of any Type 4^Z self-dual code of length n over Z/4Z which does not have all Euclidean norms divisible by 8, that is, is strictly Type I. Compare A105688.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 11, 5, 3, 39, 8, 1, 15
Offset: 1
- S. T. Dougherty, M. Harada and P. Solé, Shadow Codes over Z_4, Finite Fields Applic., 7 (2001), 507-529.
- P. Gaborit, Tables of Self-Dual Codes
- G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
- E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998; (Abstract, pdf, ps).
Showing 1-8 of 8 results.
Comments