This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A066037 #44 Feb 16 2025 08:32:45 %S A066037 1,1,6,1344,906545760,35838213722570883870720 %N A066037 Number of (undirected) Hamiltonian cycles in the binary n-cube, or the number of cyclic n-bit Gray codes. %C A066037 This is the number of ways of making a list of the 2^n nodes of the n-cube, with a distinguished starting position and a direction, such that each node is adjacent to the previous one and the last node is adjacent to the first; and then dividing the total by 2^(n+1) because the starting node and the direction do not really matter. %C A066037 The number is a multiple of n!/2 since any directed cycle starting from 0^n induces a permutation on the n bits, namely the order in which they first get set to 1. %H A066037 Michel Deza and Roman Shklyar, <a href="http://arxiv.org/abs/1003.4391">Enumeration of Hamiltonian Cycles in 6-cube</a>, arXiv:1003.4391 [cs.DM], 2010. [There may be errors - see Haanpaa and Ostergard, 2012] %H A066037 R. J. Douglas, <a href="http://dx.doi.org/10.1016/0012-365X(77)90143-1">Bounds on the number of Hamiltonian circuits in the n-cube</a>, Discrete Mathematics, 17 (1977), 143-146. %H A066037 Harri Haanpaa and Patric R. J. Östergård, <a href="https://doi.org/10.1090/S0025-5718-2013-02741-X">Counting Hamiltonian cycles in bipartite graphs</a>, Math. Comp. 83 (2014), 979-995. %H A066037 Harary, Hayes, and Wu, <a href="http://dx.doi.org/10.1016/0898-1221(88)90213-1">A survey of the theory of hypercube graphs</a>, Computers and Mathematics with Applications, 15(4), 1988, 277-289. %H A066037 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/HamiltonianCycle.html">Hamiltonian Cycle</a> %H A066037 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/HypercubeGraph.html">Hypercube Graph</a> %e A066037 The 2-cube has a single cycle consisting of all 4 edges. %t A066037 Prepend[Table[Length[FindHamiltonianCycle[HypercubeGraph[n], All]], {n, 2, 4}], 1] (* _Eric W. Weisstein_, Apr 01 2017 *) %Y A066037 Equals A006069/2^(n+1) and A003042/2. %Y A066037 Cf. A006070, A091299, A003043, A091302. %Y A066037 Cf. A236602 (superset). - _Stanislav Sykora_, Feb 01 2014 %K A066037 nonn,nice,more %O A066037 1,3 %A A066037 _John Tromp_, Dec 12 2001 %E A066037 a(6) from Michel Deza, Mar 28 2010 %E A066037 a(6) corrected by Haanpaa and Östergård, 2012. - _N. J. A. Sloane_, Sep 06 2012 %E A066037 Name clarified by _Eric W. Weisstein_, May 06 2019