cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A066038 Numbers with at least two prime factors such that the sum of the prime factors is prime.

This page as a plain text file.
%I A066038 #21 Jul 11 2025 18:39:39
%S A066038 6,10,12,18,20,22,24,34,36,40,44,48,50,54,58,68,72,80,82,88,96,100,
%T A066038 108,116,118,136,142,144,160,162,164,165,176,192,200,202,210,214,216,
%U A066038 232,236,242,250,272,273,274,284,288,298,320,324,328,345,352,358,382,384
%N A066038 Numbers with at least two prime factors such that the sum of the prime factors is prime.
%C A066038 Numbers with just one prime factor (prime powers) trivially satisfy the defining condition and are not included.
%H A066038 Harry J. Smith, <a href="/A066038/b066038.txt">Table of n, a(n) for n = 1..1000</a>
%e A066038 The prime factors of 12 are 2 and 3, which add up to 5, a prime.
%t A066038 Reap[For[n = 6, n <= 1000, n++, pp = FactorInteger[n][[All, 1]]; If[Length[pp] >= 2 && PrimeQ[Total[pp]], Sow[n]]]][[2, 1]] (* _Jean-François Alcover_, Oct 16 2016 *)
%o A066038 (PARI) sopf(n)= { local(f,s=0); f=factor(n); for(i=1, matsize(f)[1], s+=f[i, 1]); return(s) }
%o A066038 { n=0; for (m=1, 10^9, if (omega(m) > 1 && isprime(sopf(m)), write("b066038.txt", n++, " ", m); if (n==1000, return)) ) } \\ _Harry J. Smith_, Nov 07 2009
%o A066038 (PARI) isok(n) = (omega(n) > 1) && isprime(vecsum(factor(n)[,1])); \\ _Michel Marcus_, Dec 15 2018
%Y A066038 Cf. A046363, A000961, A008472.
%K A066038 nonn
%O A066038 1,1
%A A066038 _Joseph L. Pe_, Dec 12 2001
%E A066038 More terms from _Vladeta Jovovic_, Dec 13 2001