This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A066051 #6 Sep 21 2013 07:25:30 %S A066051 1,2,3,8,20,80,210,672,2688,10080,44352,236544,960960,4324320, %T A066051 20270250,104247000,522762240,3024552960,15713497800,108973522944, %U A066051 625746401280,3824005785600,24049411386000,160329409240000,858907549500000,5226869622374400 %N A066051 Maximal degree of an irreducible representation of the group of n X n signed permutation matrices. %C A066051 This group is also the automorphism group of the n-dimensional hypercube and the wreath product of the cyclic group C_2 and the symmetric group S_n. %C A066051 The number of irreducible representations is given in A000712; the order of the group in A000165. %C A066051 The group is also the Weyl group of type B_n. - _Eric M. Schmidt_, Sep 21 2013 %D A066051 Roger W. Carter, Finite Groups of Lie Type: Conjugacy Classes And Complex Characters. Wiley, 1985. %H A066051 Eric M. Schmidt, <a href="/A066051/b066051.txt">Table of n, a(n) for n = 1..40</a> %o A066051 (GAP) to produce a(8): c := CyclicGroup(2); s := SymmetricGroup(8); w := WreathProduct(c,s); Display(CharacterTable(w)); %o A066051 (Sage) def A066051(n) : return factorial(n) // min(prod(A.hooks()) * prod(B.hooks()) for (A,B) in PartitionTuples(2,n)) # _Eric M. Schmidt_, Sep 21 2013 %Y A066051 Cf. A000712, A000165, A003040. %K A066051 nonn,nice %O A066051 1,2 %A A066051 Sharon Sela (sharonsela(AT)hotmail.com), Dec 29 2001 %E A066051 More terms from _Eric M. Schmidt_, Sep 21 2013