This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A066117 #24 Jul 27 2022 16:36:26 %S A066117 2,3,6,5,15,90,7,35,525,47250,11,77,2695,1414875,66852843750,13,143, %T A066117 11011,29674645,41985913344375,2806877704512541816406250,17,221,31603, %U A066117 347980633,10326201751150285,433555011900329243987584396875 %N A066117 Triangle read by rows: T(n,k) = T(n-1,k-1)*T(n,k-1) and T(n,1) = prime(n). %C A066117 As a square array read by descending antidiagonals, A(n, k), n >= 1, k >= 1, gives the encoding defined in A297845 of the polynomial (x+1)^(n-1) * x^(k-1). - _Peter Munn_, Jul 27 2022 %H A066117 <a href="/index/Pas#Pascal">Index entries for triangles and arrays related to Pascal's triangle</a> %F A066117 From _Antti Karttunen_, Sep 19 2016: (Start) %F A066117 When computed as a square array A(row,col), row >= 1, col >= 1: %F A066117 A(1,col) = A000040(col), for row > 1, A(row,col) = A(row-1,col)*A(row-1,col+1). %F A066117 A(row,1) = A007188(row-1), for col > 1, A(row,col) = A003961(A(row,col-1)). %F A066117 For all row >= 1, col >= 1, A055396(A(row,col)) = col. %F A066117 (End) %F A066117 A(1,1) = 2; for n > 1, A(n,k) = A297845(A(n-1,k),6); for k > 1, A(n,k) = A297845(A(n,k-1),3). - _Peter Munn_, Jul 20 2022 %e A066117 T(4,3) = T(3,2)*T(4,2) = 15*35 = 525. Rows start %e A066117 2; %e A066117 3, 6; %e A066117 5, 15, 90; %e A066117 7, 35, 525, 47250; %e A066117 ... %e A066117 From _Antti Karttunen_, Sep 18 2016: (Start) %e A066117 Alternatively, this table can be viewed as a square array. Then the top left 5x4 corner looks as: %e A066117 2, 3, 5, 7, 11 %e A066117 6, 15, 35, 77, 143 %e A066117 90, 525, 2695, 11011, 31603 %e A066117 47250, 1414875, 29674645, 347980633, 2255916949 %e A066117 (End) %t A066117 T[n_, 1] := Prime[n]; %t A066117 T[n_, k_] := T[n, k] = T[n - 1, k - 1]*T[n, k - 1]; %t A066117 Table[T[n, k], {n, 1, 7}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Nov 13 2017 *) %o A066117 (Scheme) %o A066117 (define (A066117 n) (A066117bi (A002260 n) (A004736 n))) %o A066117 ;; Compute as a square array, with row >= 1, col >= 1: %o A066117 (define (A066117bi row col) (if (= 1 row) (A000040 col) (* (A066117bi (- row 1) col) (A066117bi (- row 1) (+ col 1))))) %o A066117 ;; With alternative recurrence: %o A066117 (define (A066117bi row col) (if (= 1 col) (A007188 (- row 1)) (A003961 (A066117bi row (- col 1))))) %o A066117 ;; _Antti Karttunen_, Sep 18 2016 %Y A066117 Cf. A000040, A006094 and A066116 (three leftmost diagonal of triangular table = three topmost rows of square array). %Y A066117 Cf. A007188, A267096 (two rightmost diagonals of the triangular table = two leftmost columns of square array). %Y A066117 Cf. A003961, A055396, A297845. %Y A066117 Cf. A064319, A066119. %Y A066117 Cf. also A099884, A255483, A276586, A276588 (other arrays derived from this one). %K A066117 nonn,tabl %O A066117 1,1 %A A066117 _Henry Bottomley_, Dec 05 2001