cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A068943 a(n) = f(n, n, n), where f is the generalized super falling factorial (see comments for definition.).

Original entry on oeis.org

1, 2, 24, 331776, 2524286414780230533120, 18356962141505758798331790171539976807981714702571497465907439808868887035904000000
Offset: 1

Views

Author

Francois Jooste (phukraut(AT)hotmail.com), Mar 09 2002

Keywords

Comments

f(x, p, r) = Product_{m = 1..p} (x-m+1)^binomial(m+r-2, m-1), for x > 0, x >= p >= 0, r > 0. f is a generalization of both the multi-level factorial A066121(n, k) and the falling factorial A068424(x, n). f(n, n, 1) = n! and f(n, n, 2) = the superfactorial A000178(n). In general f(n, n, r) = A066121(n+r, r+1). f(x, p, 1) = A068424(x, p) and f(x, p, r+1) = Product_{i = 0..p-1} f(x-i, p-i, r).
a(8) has 1213 digits. - Michael S. Branicky, Apr 09 2023

Examples

			a(3) = 24 since (4-1)^binomial(1+3-2,1-1) * (4-2)^binomial(2+3-2,2-1) * (4-3)^binomial(3+3-2,3-1) = 3^1 * 2^3 * 1 = 24.
		

Programs

  • Maple
    f := (x,p,r)->`if`(r<>0,`if`(p>0,product((x-m+1)^binomial(m+r-2,m-1),m=1..p),1),x); f(n,n,n);
  • PARI
    a(n)=prod(m=1,n, (n-m+1)^binomial(m+n-2,m-1)) \\ Charles R Greathouse IV, Oct 30 2021
    
  • Python
    from math import comb, prod
    def a(n): return prod((n-m+1)**comb(m+n-2, m-1) for m in range(1, n+1))
    print([a(n) for n in range(1, 8)]) # Michael S. Branicky, Apr 09 2023

Formula

a(n) = Product_{m = 1..n} (n-m+1)^binomial(m+n-2, m-1).

Extensions

Edited by David Wasserman, Mar 14 2003

A066119 Multi-level primorials: triangle with a(n,k)=a(n-1,k-1)*a(n-1,k) but with a(n,1)=p(n) and a(n,n)=2.

Original entry on oeis.org

2, 3, 2, 5, 6, 2, 7, 30, 12, 2, 11, 210, 360, 24, 2, 13, 2310, 75600, 8640, 48, 2, 17, 30030, 174636000, 653184000, 414720, 96, 2, 19, 510510, 5244319080000, 114069441024000000, 270888468480000, 39813120, 192, 2, 23, 9699690
Offset: 1

Views

Author

Henry Bottomley, Dec 05 2001

Keywords

Examples

			a(4,3)=a(3,2)*a(3,3)=6*2=12. Rows start 2; 3,2; 5,6,2; 7,30,12,2; ...
		

Crossrefs

Columns include A000040, A002110, A006939 and A066120. Right hand side includes A007395 and A007283. Cf. A066121.
Showing 1-2 of 2 results.