This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A066146 #24 Dec 14 2024 17:34:11 %S A066146 2,37,2,2,571,47,3,3,103,61,113,97,797,41893,499,109,701,997,1231,47, %T A066146 1801,557,1129,7481,15731,32579,491,257,23,24551,8753,110339,3119, %U A066146 10133,46811,4799,5233,215389,1049,1063039,64327,349,2477,69827,317,107377 %N A066146 Primes associated with A066042. %C A066146 No further terms found to 10^8. %H A066146 Harry J. Smith, <a href="/A066146/b066146.txt">Table of n, a(n) for n = 1..54</a> %F A066146 Sum digits of n; find product of digits of n; multiply sum by product; divide this product into n; if result is prime add to sequence %e A066146 a(5)=571 because 4+1+1+1+2=9 and 4*2=8; 8*9=72; 41112/72 = 571 and 571 is prime. [corrected by _Harry J. Smith_, Feb 02 2010] %t A066146 rp[n_]:=Module[{idn=IntegerDigits[n],p},If[MemberQ[idn,0],p=1,p=n/ (Total[ idn] Times@@idn)];If[PrimeQ[p],p,0]]; DeleteCases[ rp/@ Range[ 10^8],0] (* _Harvey P. Dale_, Jan 03 2015 *) %o A066146 (PARI) { for(k=0, 10^7, my(d=digits(k), q=vecsum(d)*vecprod(d)); if (q != 0 && k%q==0 && isprime(k/q), print1(k/q, ", "))) } \\ _Harry J. Smith_, Feb 02 2010 %Y A066146 Cf. A066042. %K A066146 easy,nonn,base %O A066146 1,1 %A A066146 _Enoch Haga_, Dec 13 2001 %E A066146 Offset changed from 2 to 1 by _Harry J. Smith_, Feb 02 2010 %E A066146 a(32)-a(46) from _Harry J. Smith_, Feb 02 2010