This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A066150 #23 Jul 08 2019 12:33:19 %S A066150 4,12,32,64,128,240,448,768,1344,2304,4032,6720,10752,17280,26880, %T A066150 41472,64512,103680,161280,245760,368640,552960,860160,1290240, %U A066150 1966080,2764800,4128768,6193152,8957952,13271040,19660800,28311552,41287680,59719680,88473600,127401984,181665792,264241152,382205952,530841600 %N A066150 Maximal number of divisors of any n-digit number. %H A066150 Amiram Eldar, <a href="/A066150/b066150.txt">Table of n, a(n) for n = 1..1000</a> %F A066150 a(n) = largest integer m such that A005179(m) < 10^n. - _Max Alekseyev_, Apr 29 2010 %F A066150 a(n) = A000005(A066151(n)). - _Amiram Eldar_, Jul 02 2019 %e A066150 a(1) = 4 since 8 has 4 divisors and that is the record for 1-digit numbers. %o A066150 (PARI) a066150(m,n) = local(d,a,k,b); for(d=m,n,a=0; for(k=10^d,10^(d+1)-1,b =numdiv(k); if(b>a,a=b)); print1(a,",")) %o A066150 a066150(0,6) %Y A066150 Cf. A000005, A066151, A069650, %Y A066150 Cf. A130130 (minimal number of divisors of any n-digit number). [_Jaroslav Krizek_, Jul 18 2010] %K A066150 nonn,base,easy %O A066150 1,1 %A A066150 _Joseph L. Pe_, Dec 12 2001 %E A066150 One more term from _Klaus Brockhaus_, Dec 13 2001 %E A066150 Further terms from _Vladeta Jovovic_ and _Vladimir Baltic_, Dec 16 2001 %E A066150 Extended further by _David Wasserman_, Jan 25 2002