cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A066183 Total sum of squares of parts in all partitions of n.

This page as a plain text file.
%I A066183 #71 Jun 01 2018 19:11:23
%S A066183 1,6,17,44,87,180,311,558,910,1494,2302,3608,5343,7986,11554,16714,
%T A066183 23549,33270,45942,63506,86338,117156,156899,209926,277520,366260,
%U A066183 479012,624956,808935,1044994,1340364,1715572,2182935,2770942,3499379
%N A066183 Total sum of squares of parts in all partitions of n.
%C A066183 Sum of hook lengths of all boxes in the Ferrers diagrams of all partitions of n (see the Guo-Niu Han paper, p. 25, Corollary 6.5). Example: a(3) = 17 because for the partitions (3), (2,1), (1,1,1) of n=3 the hook length multi-sets are {3,2,1}, {3,1,1}, {3,2,1}, respectively; the total sum of all hook lengths is 6+5+6 = 17. - _Emeric Deutsch_, May 15 2008
%C A066183 Partial sums of A206440. - _Omar E. Pol_, Feb 08 2012
%C A066183 Column k=2 of A213191. - _Alois P. Heinz_, Sep 20 2013
%C A066183 Row sums of triangles A180681, A206561 and A299768. - _Omar E. Pol_, Mar 20 2018
%H A066183 Alois P. Heinz, <a href="/A066183/b066183.txt">Table of n, a(n) for n = 1..10000</a>
%H A066183 Guo-Niu Han, <a href="https://arxiv.org/abs/0804.1849">An explicit expansion formula for the powers of the Euler product in terms of partition hook lengths</a>, arXiv:0804.1849v3 [math.CO], May 09 2008.
%F A066183 a(n) = Sum_{k=1..n} sigma_2(k)*numbpart(n-k), where sigma_2(k)=sum of squares of divisors of k=A001157(k). - _Vladeta Jovovic_, Jan 26 2002
%F A066183 a(n) = Sum_{k>=0} k*A265245(n,k). - _Emeric Deutsch_, Dec 06 2015
%F A066183 G.f.: g(x) = (Sum_{k>=1} k^2*x^k/(1-x^k))/Product_{q>=1} (1-x^q). - _Emeric Deutsch_, Dec 06 2015
%F A066183 a(n) ~ 3*sqrt(2)*Zeta(3)/Pi^3 * exp(Pi*sqrt(2*n/3)) * sqrt(n). - _Vaclav Kotesovec_, May 28 2018
%e A066183 a(3) = 17 because the squares of all partitions of 3 are {9}, {4,1} and {1,1,1}, summing to 17.
%p A066183 b:= proc(n, i) option remember; local g, h;
%p A066183       if n=0 then [1, 0]
%p A066183     elif i<1 then [0, 0]
%p A066183     elif i>n then b(n, i-1)
%p A066183     else g:= b(n, i-1); h:= b(n-i, i);
%p A066183          [g[1]+h[1], g[2]+h[2] +h[1]*i^2]
%p A066183       fi
%p A066183     end:
%p A066183 a:= n-> b(n, n)[2]:
%p A066183 seq(a(n), n=1..40);  # _Alois P. Heinz_, Feb 23 2012
%p A066183 # second Maple program:
%p A066183 g := (sum(k^2*x^k/(1-x^k), k = 1..100))/(product(1-x^k, k = 1..100)): gser := series(g, x = 0, 45): seq(coeff(gser, x, m), m = 1 .. 40); # _Emeric Deutsch_, Dec 06 2015
%t A066183 Table[Apply[Plus, IntegerPartitions[n]^2, {0, 2}], {n, 30}]
%t A066183 (* Second program: *)
%t A066183 b[n_, i_] := b[n, i] = Module[{g, h}, Which[n==0, {1, 0}, i<1, {0, 0}, i>n, b[n, i-1], True, g = b[n, i-1]; h = b[n-i, i]; {g[[1]] + h[[1]], g[[2]] + h[[2]] + h[[1]]*i^2}]]; a[n_] :=  b[n, n][[2]]; Table[a[n], {n, 1, 40}] (* _Jean-François Alcover_, Aug 31 2015, after _Alois P. Heinz_ *)
%o A066183 (PARI) a(n)=my(s); forpart(v=n,s+=sum(i=1,#v,v[i]^2));s \\ _Charles R Greathouse IV_, Aug 31 2015
%o A066183 (PARI) a(n)=sum(k=1,n,sigma(k,2)*numbpart(n-k)) \\ _Charles R Greathouse IV_, Aug 31 2015
%Y A066183 Cf. A000041, A001157, A180681, A206440, A206561, A213191, A263004, A265245, A299768.
%K A066183 nonn
%O A066183 1,2
%A A066183 _Wouter Meeussen_, Dec 15 2001
%E A066183 More terms from _Naohiro Nomoto_, Feb 07 2002