cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A066220 Least k > 0 such that t^k = 1 mod (prime(n) - t) for 0 < t < prime(n).

Original entry on oeis.org

1, 1, 2, 4, 6, 60, 60, 120, 144, 7920, 55440, 18480, 7920, 27720, 2520, 637560, 8288280, 480720240, 480720240, 480720240, 480720240, 480720240, 1442160720, 9854764920, 59128589520, 59128589520, 147821473800, 670124014560
Offset: 1

Views

Author

Michael Ulm (taga(AT)hades.math.uni-rostock.de), Dec 18 2001

Keywords

Comments

This sequence gives the period length of the base-p representation of HarmonicNumber[p-1]/p^2 (whose numerator is A061002).

Examples

			a(5) = 6 because 2^6 = 1 mod 9, 3^6 = 1 mod 8, 4^6 = 1 mod 7, 5^6 = 1 mod 6, 6^6 = 1 mod 5, 7^6 = 1 mod 4, 8^6 = 1 mod 3, 9^6 = 1 mod 2 and 6 is the minimal exponent that satisfies this.
		

Programs

  • Mathematica
    a[p_?PrimeQ] := Module[{e = 1}, While[! And @@ Table[Mod[PowerMod[i, e, p - i] - 1, p - i] == 0, {i, p - 1}], e++]; e]; a /@ Prime[Range[10]]