A066241 1 + number of anti-divisors of n.
1, 1, 2, 2, 3, 2, 4, 3, 3, 4, 4, 3, 5, 4, 4, 3, 6, 5, 4, 4, 4, 6, 6, 3, 6, 4, 6, 6, 4, 4, 6, 7, 6, 4, 6, 3, 6, 8, 6, 5, 5, 6, 6, 4, 8, 6, 6, 4, 7, 7, 4, 8, 8, 4, 6, 4, 6, 8, 8, 7, 5, 6, 8, 3, 6, 6, 10, 8, 4, 6, 6, 7, 8, 6, 6, 6, 10, 6, 4, 6, 7, 8, 8, 5, 9, 6, 8, 8, 4, 6, 6, 6, 8, 10, 10, 2, 8, 9, 6, 5
Offset: 1
Examples
For example, n = 18: 2n-1, 2n, 2n+1 are 35, 36, 37 with odd divisors > 1 {3,7,35}, {3,9}, {37} and quotients 7, 5, 1, 12, 4, 1, so the anti-divisors of 12 are 4, 5, 7, 12. Therefore a(18) = 1 + 4 = 5.
Links
- Jon Perry, Anti-divisors
- Jon Perry, The Anti-divisor [Cached copy]
- Jon Perry, The Anti-divisor: Even More Anti-Divisors [Cached copy]
Programs
-
Mathematica
antid[n_] := Select[ Union[ Join[ Select[ Divisors[2n - 1], OddQ[ # ] && # != 1 &], Select[ Divisors[2n + 1], OddQ[ # ] && # != 1 &], 2n/Select[ Divisors[2*n], OddQ[ # ] && # != 1 &]]], # < n &]; Table[ Length[ antid[n]] + 1, {n, 1, 100} ]
Extensions
More terms from Robert G. Wilson v, Jan 03 2002
Comments