cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A066290 Numbers m such that DivisorSigma(4*k-2, m) mod m = 0 holds presumably for all k; that is, (4k-2)-power-sums of divisors of m are divisible by m for all k.

Original entry on oeis.org

1, 10, 60, 65, 130, 150, 260, 780, 1105, 2210, 4420, 8840, 13260, 19720, 20737, 32045, 41474, 55250, 64090, 82948, 103685, 128180, 207370, 207553, 221000, 248844, 256360, 295800, 331500, 352529, 384540, 414740, 415106, 450840, 512720, 705058, 829480, 830212
Offset: 1

Views

Author

Labos Elemer, Dec 12 2001

Keywords

Examples

			Tested for each m and k < 200. Proof for several values of k seems not so tedious because the number of divisors of the terms of the sequence is not so large: {1, 4, 12, 4, 8, 12, 12, 24, 8, 16, 24, 32, 48, 32, 4, 16, 8, 32, 32, 12, 8, 48, 16, 8, 64, 24, 64, 96, 96, 8, 96, 24, 16, 96, 80, 16, 32, 24}.
		

Crossrefs

Programs

  • Mathematica
    lastSeq = {}; max = 100; While[seq = Reap[For[n = 1, n < 10^6, n++, If[AllTrue[Range[max], Mod[DivisorSigma[4 # - 2, n], n] == 0&], Print[n]; Sow[n]]]][[2, 1]]; seq != lastSeq, lastSeq = seq; max = max + 100; Print["max = ", max]]; seq (* Jean-François Alcover, Oct 02 2016 *)

Formula

DivisorSigma(4k-2, m)/m is an integer for k = 1, 2, 3, .., 200, ...

Extensions

More terms from Jean-François Alcover, Oct 02 2016