A066321 Binary representation of base-(i-1) expansion of n: replace i-1 with 2 in base-(i-1) expansion of n.
0, 1, 12, 13, 464, 465, 476, 477, 448, 449, 460, 461, 272, 273, 284, 285, 256, 257, 268, 269, 3280, 3281, 3292, 3293, 3264, 3265, 3276, 3277, 3088, 3089, 3100, 3101, 3072, 3073, 3084, 3085, 3536, 3537, 3548, 3549, 3520, 3521, 3532, 3533, 3344, 3345, 3356
Offset: 0
Examples
a(4) = 464 = 2^8 + 2^7 + 2^6 + 2^4 since (i-1)^8 + (i-1)^7 + (i-1)^6 + (i-1)^4 = 4.
References
- D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, 1969, Vol. 2, p. 172. (See also exercise 16, p. 177; answer, p. 494.)
Links
- Paul Tek, Table of n, a(n) for n = 0..10000
- Joerg Arndt, The fxt demos: bit wizardry, radix(-1+i), C++ radix-m1pi.h function bin_real_to_radm1pi().
- Solomon I. Khmelnik, Specialized Digital Computer for Operations with Complex Numbers, Questions of Radio Electronics, 12 (1964), 60-82 [in Russian].
- W. J. Penney, A "binary" system for complex numbers, JACM 12 (1965), 247-248.
- N. J. A. Sloane, Table of n, (I-1)^n for n = 0..100
- Paul Tek, Perl program for this sequence
- Andrey Zabolotskiy, negation & addition of Gaussian integers written in base i-1 [Python script].
Crossrefs
Programs
-
Maple
f:= proc(n) option remember; local t,m; t:= n mod 4; procname(t) + 16*procname((t-n)/4) end proc: f(0):= 0: f(1):= 1: f(2):= 12: f(3):= 13: seq(f(i),i=0..100); # Robert Israel, Oct 21 2016
-
PARI
a(n) = my(ret=0,p=0); while(n, ret+=[0,1,12,13][n%4+1]<
-
Perl
See Links section.
-
Python
from gmpy2 import c_divmod u = ('0000','1000','0011','1011') def A066321(n): if n == 0: return 0 else: s, q = '', n while q: q, r = c_divmod(q, -4) s += u[r] return int(s[::-1],2) # Chai Wah Wu, Apr 09 2016
Formula
In "rebase notation" a(n) = (i-1)[n]2.
G.f. g(z) satisfies g(z) = z*(1+12*z+13*z^2)/(1-z^4) + 16*z^4*(13+12*z^4+z^8)/((1-z)*(1+z^4)*(1+z^8)) + 256*(1-z^16)*g(z^16)/(z^12-z^13). - Robert Israel, Oct 21 2016
Comments