This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A066343 #36 Feb 16 2025 08:32:45 %S A066343 3,6,9,13,16,19,23,26,29,33,36,39,43,46,49,53,56,59,63,66,69,73,76,79, %T A066343 83,86,89,93,96,99,102,106,109,112,116,119,122,126,129,132,136,139, %U A066343 142,146,149,152,156,159,162,166,169,172,176,179,182,186,189,192,195,199 %N A066343 Beatty sequence for log_2(10). %C A066343 Number of positive integers <= 10^n that are divisible by no prime exceeding 2. %C A066343 Maximum number of prime divisors of positive integers <= 10^n counted with multiplicity. - _Martin Renner_, Apr 04 2014 %C A066343 You wish to represent the rational number n/d in decimal notation, where n is an integer, d is a nonzero integer, and precision(d) represents the number of decimal digits in d. The decimal notation representation of n/d will either terminate or repeat with a repetend. If the decimal notation representation terminates then this sequence defines the maximum number of decimal digits to the right of the decimal point (after truncating trailing zeros) for a given precision of d ... floor(precision(d) * log_2(10)). - _Michael T Howard_, Jul 17 2017 %C A066343 Beatty complement of A066344. - _Jianing Song_, Jan 27 2019 %H A066343 Harry J. Smith, <a href="/A066343/b066343.txt">Table of n, a(n) for n = 1..1000</a> %H A066343 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BeattySequence.html">Beatty Sequence</a> %F A066343 a(n) = floor(n*log_2(10)). %p A066343 seq(floor(log[2](10)*n),n=1..60); # _Martin Renner_, Apr 04 2014 %t A066343 Table[ Floor[ n*Log[2, 10]], {n, 60}] (* _Robert G. Wilson v_, May 27 2005 *) %o A066343 (PARI) { l=log(10)/log(2); for (n=1, 1000, a=floor(n*l); write("b066343.txt", n, " ", a) ) } \\ _Harry J. Smith_, Feb 11 2010 %o A066343 (Python) %o A066343 def A066343(n): return (5**n).bit_length()+n-1 # _Chai Wah Wu_, Sep 08 2024 %Y A066343 Cf. A066344, A067497, A129344. %Y A066343 Cf. A020862 (log_2(10)). %K A066343 easy,nonn %O A066343 1,1 %A A066343 _Vladeta Jovovic_, Dec 15 2001