A066387 Triangle T(n,m) (1<=m<=n) giving number of maps f:N -> N such that f^m(X)=X+n for all natural numbers X.
1, 1, 2, 1, 0, 6, 1, 12, 0, 24, 1, 0, 0, 0, 120, 1, 120, 360, 0, 0, 720, 1, 0, 0, 0, 0, 0, 5040, 1, 1680, 0, 20160, 0, 0, 0, 40320, 1, 0, 60480, 0, 0, 0, 0, 0, 362880, 1, 30240, 0, 0, 1814400, 0, 0, 0, 0, 3628800, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 39916800
Offset: 1
Examples
Triangle T(n,m) begins: 1; 1, 2; 1, 0, 6; 1, 12, 0, 24; 1, 0, 0, 0, 120; 1, 120, 360, 0, 0, 720; 1, 0, 0, 0, 0, 0, 5040; 1, 1680, 0, 20160, 0, 0, 0, 40320; ...
Links
- Vincenzo Librandi, Rows n = 1..100, flattened
- A. Heinis, R. Jeurissen and L. Kamstra, Problem 18 and solution, Nieuw Arch. Wisk. 5/2 (2001) 380.
Crossrefs
Programs
-
Mathematica
t[n_, m_] /; Divisible[n, m] := n!/(n/m)!; t[, ] = 0; Flatten[Table[t[n, m], {n, 1, 11}, {m, 1, n}]] (* Jean-François Alcover, Nov 29 2011 *)
Formula
T(n,m) = n!/(n/m)! if m|n, T(n,m) = 0 otherwise.