cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A066398 Reversion of g.f. (with constant term included) for partition numbers.

This page as a plain text file.
%I A066398 #34 Mar 13 2020 18:06:14
%S A066398 1,-1,0,2,-3,0,5,0,-21,14,117,-342,210,935,-2565,1864,2751,-3945,
%T A066398 -8074,4046,108927,-333832,246895,887040,-2764795,3062749,-1372098,
%U A066398 4775900,-9367698,-55130625,299939766,-537241936,-140898285,2464380030,-4060507784,193070394
%N A066398 Reversion of g.f. (with constant term included) for partition numbers.
%C A066398 See A301624 for the corresponding series reversion for the plane partition numbers A000219. - _Peter Bala_, Feb 09 2020
%H A066398 P. Bala, <a href="/A066398/a066398_1.pdf">Representing a sequence as [x^n] G(x)^n</a>
%H A066398 <a href="/index/Res#revert">Index entries for reversions of series</a>
%F A066398 The o.g.f. A(x) = 1 - x + 2*x^3 - 3*x^4 + 5*x^6 - ... satisfies [x^n](1/A(x))^n = sigma(n) = A000203(n) for n >= 1. - _Peter Bala_, Aug 23 2015
%F A066398 G.f. A(x) satisfies: A(x) = Product_{k>=1} (1 - x^k*A(x)^k). - _Ilya Gutkovskiy_, Mar 21 2018
%p A066398 with(numtheory):
%p A066398 Order := 36:
%p A066398 Gser := solve(series(x*exp(add(sigma[1](n)*x^n/n, n = 1..35)), x) = y, x):
%p A066398 seq(coeff(Gser, y^k), k = 1..35); # _Peter Bala_, Feb 09 2020
%t A066398 nmax = 34; sol = {a[0] -> 1};
%t A066398 Do[A[x_] = Sum[a[k] x^k, {k, 0, n}] /. sol; eq = CoefficientList[A[x] - Product[ 1 - x^k*A[x]^k, {k, 1, n}] + O[x]^(n + 1), x] == 0 /. sol; sol = sol ~Join~ Solve[eq][[1]], {n, 1, nmax}];
%t A066398 sol /. Rule -> Set;
%t A066398 a /@ Range[0, nmax] (* _Jean-François Alcover_, Nov 02 2019 *)
%Y A066398 Cf. A000041, A000203, A007312, A301624.
%K A066398 sign
%O A066398 0,4
%A A066398 _N. J. A. Sloane_, Dec 25 2001