This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A066411 #72 Oct 20 2021 00:31:37 %S A066411 1,1,3,5,23,61,143,215,995,2481,5785,12907,29279,64963,144289,158049, %T A066411 683311,1471123,3166531,6759177,14404547,30548713 %N A066411 Form a triangle with the numbers [0..n] on the base, where each number is the sum of the two below; a(n) is the number of different possible values for the apex. %C A066411 a(n) is the number of different possible sums of c_k * (n choose k) where the c_k are a permutation of 0 through n. - _Joshua Zucker_, May 08 2006 %e A066411 For n = 2 we have three triangles: %e A066411 ..4.......5.......3 %e A066411 .1,3.....2,3.....2,1 %e A066411 0,1,2...0,2,1...2,0,1 %e A066411 with three different values for the apex, so a(2) = 3. %t A066411 g[s_List] := Plus @@@ Partition[s, 2, 1]; f[n_] := Block[{k = 1, lmt = 1 + (n + 1)!, lst = {}, p = Permutations[Range[0, n]]}, While[k < lmt, AppendTo[ lst, Nest[g, p[[k]], n][[1]]]; k++]; lst]; Table[ Length@ Union@ f@ n, {n, 0, 10}] (* _Robert G. Wilson v_, Jan 24 2012 *) %o A066411 (MATLAB) %o A066411 for n=0:9 %o A066411 size(unique(perms(0:n)*diag(fliplr(pascal(n+1)))),1) %o A066411 end % _Nathaniel Johnston_, Apr 20 2011 %o A066411 (C++) %o A066411 #include <iostream> %o A066411 #include <vector> %o A066411 #include <set> %o A066411 #include <algorithm> %o A066411 using namespace std; %o A066411 inline long long pascApx(const vector<int> & s) %o A066411 { %o A066411 const int n = s.size() ; %o A066411 vector<long long> scp(n) ; %o A066411 for(int i=0; i<n; i++) %o A066411 scp[i] = s[i] ; %o A066411 for(int i=1; i<n; i++) %o A066411 for(int acc=0 ; acc < n-i ; acc++) %o A066411 scp[acc] += scp[acc+1] ; %o A066411 return scp[0] ; %o A066411 } %o A066411 int main(int argc, char *argv[]) %o A066411 { %o A066411 for(int n=1 ; ;n++) %o A066411 { %o A066411 vector<int> s; %o A066411 for(int i=0;i<n;i++) %o A066411 s.push_back(i) ; %o A066411 set<long long> apx; %o A066411 do %o A066411 { %o A066411 apx.insert( pascApx(s)) ; %o A066411 } while( next_permutation(s.begin(),s.end()) ) ; %o A066411 cout << n << " " << apx.size() << endl ; %o A066411 } %o A066411 return 0 ; %o A066411 } /* _R. J. Mathar_, Jan 24 2012 */ %o A066411 (PARI) A066411(n)={my(u=0,o=A189391(n),v,b=vector(n++,i,binomial(n-1,i-1))~);sum(k=1,n!\2,!bittest(u,numtoperm(n,k)*b-o) & u+=1<<(numtoperm(n,k)*b-o))} \\ _M. F. Hasler_, Jan 24 2012 %o A066411 (Haskell) %o A066411 import Data.List (permutations, nub) %o A066411 a066411 0 = 1 %o A066411 a066411 n = length $ nub $ map %o A066411 apex [perm | perm <- permutations [0..n], head perm < last perm] where %o A066411 apex = head . until ((== 1) . length) %o A066411 (\xs -> (zipWith (+) xs $ tail xs)) %o A066411 -- _Reinhard Zumkeller_, Jan 24 2012 %o A066411 (Python) %o A066411 from sympy import binomial %o A066411 def partitionpairs(xlist): # generator of all partitions into pairs and at most 1 singleton, returning the sums of the pairs %o A066411 if len(xlist) <= 2: %o A066411 yield [sum(xlist)] %o A066411 else: %o A066411 m = len(xlist) %o A066411 for i in range(m-1): %o A066411 for j in range(i+1,m): %o A066411 rem = xlist[:i]+xlist[i+1:j]+xlist[j+1:] %o A066411 y = [xlist[i]+xlist[j]] %o A066411 for d in partitionpairs(rem): %o A066411 yield y+d %o A066411 def A066411(n): %o A066411 b = [binomial(n,k) for k in range(n//2+1)] %o A066411 return len(set((sum(d[i]*b[i] for i in range(n//2+1)) for d in partitionpairs(list(range(n+1)))))) # _Chai Wah Wu_, Oct 19 2021 %Y A066411 Cf. A062684, A062896, A099325, A189162, A189390 (maximum apex value), A189391 (minimum apex value). %K A066411 nonn,nice,more %O A066411 0,3 %A A066411 _Naohiro Nomoto_, Dec 25 2001 %E A066411 More terms from _John W. Layman_, Jan 07 2003 %E A066411 a(10) from _Nathaniel Johnston_, Apr 20 2011 %E A066411 a(11) from _Alois P. Heinz_, Apr 21 2011 %E A066411 a(12) and a(13) from _Joerg Arndt_, Apr 21 2011 %E A066411 a(14)-a(15) from _Alois P. Heinz_, Apr 27 2011 %E A066411 a(0)-a(15) verified by _R. H. Hardin_ Jan 27 2012 %E A066411 a(16) from _Alois P. Heinz_, Jan 28 2012 %E A066411 a(17)-a(21) from _Graeme McRae_, Jan 28, Feb 01 2012