cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A066413 Eisenstein-Mersenne primes: primes of the form ((3 +/- sqrt(-3))/2)^p - 1.

This page as a plain text file.
%I A066413 #19 Sep 27 2022 13:07:24
%S A066413 7,271,2269,176419,129159847,1162320517,
%T A066413 49269609804781974450852068861184694669,
%U A066413 589881151426658740854227725580736348850640632297373414091790995505756623268837
%N A066413 Eisenstein-Mersenne primes: primes of the form ((3 +/- sqrt(-3))/2)^p - 1.
%C A066413 Analogs of Mersenne primes in Eisenstein integers.
%C A066413 The norm of a + b*w is (a+b*w)*(a+b*w^2) = a^2 - a*b + b^2.
%D A066413 Mike Oakes, email dated Dec 24 2001 to primenumbers(AT)yahoogroups.com
%H A066413 K. Pershell and L. Huff, <a href="https://www.utm.edu/staff/caldwell/preprints/kpp/Paper2.pdf">Mersenne primes in imaginary quadratic number fields</a>, Apr 30 2002.
%e A066413 For n = 7, (1-w)^7 - 1 has norm 2269, a prime.
%t A066413 maxPi = 40; norm[p_] := 1 + 3^p - 2*3^(p/2)*Cos[p*Pi/6]; A066413 = {}; Do[ If[ PrimeQ[ np = norm[ Prime[k] ] ], AppendTo[ A066413, np] ], {k, 1, maxPi}]; A066413 (* _Jean-François Alcover_, Oct 16 2012 *)
%Y A066413 Cf. A066408.
%K A066413 nonn,nice
%O A066413 1,1
%A A066413 _Mike Oakes_, Dec 24 2001
%E A066413 Name changed by _Arkadiusz Wesolowski_, Apr 27 2012