A066419 Numbers k such that k! is not divisible by the sum of the decimal digits of k!.
432, 444, 453, 458, 474, 476, 485, 489, 498, 507, 509, 532, 539, 541, 548, 550, 552, 554, 555, 556, 560, 565, 567, 576, 593, 597, 603, 608, 609, 610, 611, 612, 613, 624, 630, 632, 634, 640, 645, 657, 663, 665, 683, 685, 686, 692, 698, 703, 706, 708, 714
Offset: 1
Examples
The sum of the decimal digits of 5! is 1+2+0=3 and 3 divides 120, so 5 is not in the sequence. The sum of the decimal digits of 432! is 3897 = (9)(433) and 3897 does not divide 432!, so 432 is in the sequence.
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Matthew Conroy)
- Dimitri Zucker, Factorial Fact Frenzy (!), Combo Class Youtube video (2022).
Crossrefs
Cf. A004152 (sum of digits of n!).
Programs
-
Mathematica
Select[Range[1000], !Divisible[Factorial[#],Total[IntegerDigits[Factorial[#]]]] &], (* Tanya Khovanova, Jun 13 2021 *)
-
PARI
isA066419(n) = (Mod(n!, sumdigits(n!)) != 0) \\ Jianing Song, Aug 26 2024
-
Python
from math import factorial def sd(n): return sum(map(int, str(n))) def ok(f): return f%sd(f) != 0 print([n for n in range(1, 715) if ok(factorial(n))]) # Michael S. Branicky, Jun 13 2021