A066481 Largest anti-divisor of n.
2, 3, 3, 4, 5, 5, 6, 7, 7, 8, 9, 9, 10, 11, 11, 12, 13, 13, 14, 15, 15, 16, 17, 17, 18, 19, 19, 20, 21, 21, 22, 23, 23, 24, 25, 25, 26, 27, 27, 28, 29, 29, 30, 31, 31, 32, 33, 33, 34, 35, 35, 36, 37, 37, 38, 39, 39, 40, 41, 41, 42, 43, 43, 44, 45, 45, 46, 47, 47, 48, 49, 49, 50
Offset: 3
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 3..10000
Crossrefs
Cf. A066482.
Programs
-
Maple
antidivisors := proc(n) local a, k; a := {} ; for k from 2 to n-1 do if abs((n mod k)- k/2) < 1 then a := a union {k} ; end if; end do: a ; end proc: A066481 := proc(n) if n < 3 then return 0; else sort(convert(antidivisors(n),list)) ; op(-1,%) ; end if; end proc: # R. J. Mathar, Mar 15 2013
-
Mathematica
antid[n_] := Select[ Union[ Join[ Select[ Divisors[2n - 1], OddQ[ # ] && # != 1 &], Select[ Divisors[2n + 1], OddQ[ # ] && # != 1 &], 2n/Select[ Divisors[2*n], OddQ[ # ] && # != 1 &]]], # < n & ]; Table[ Last[ antid[n]], {n, 3, 100} ]
-
PARI
a(n)=2*n\/3 \\ Charles R Greathouse IV, Feb 27 2013
Comments