This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A066484 #24 Jan 09 2020 03:26:17 %S A066484 1113,1131,1311,2226,2262,2622,3111,3339,3393,3933,6222,9333,11133, %T A066484 11313,11331,13113,13131,13311,22266,22626,22662,26226,26262,26622, %U A066484 31113,31131,31311,33111,33399,33939,33993,39339,39393,39933,62226,62262,62622,66222,93339,93393,93933,99333,111333,111339,111393 %N A066484 Numbers with at least 2 distinct digits and whose "rotations" (including the number itself) are multiples of these digits; repeated digits allowed but digit 0 not allowed. %C A066484 "Rotation" of a (multi-digit) number involves taking the first digit of the number and putting it at the end to form a new number. For example, successive rotations of 1234 yield the numbers 2341, 3412 and 4123 (another rotation gives back the original number). %C A066484 Subsequence of A034838, A052382 and of A139819. - _Reinhard Zumkeller_, Nov 29 2012 %H A066484 Reinhard Zumkeller, <a href="/A066484/b066484.txt">Table of n, a(n) for n = 1..1000</a> %H A066484 Ken Duisenberg, Puzzle of the Week (Dec 14, 2001), <a href="http://www.ecst.csuchico.edu/~kend/potw/archive/011214.html">Dividing Rotated Numbers</a> %e A066484 The rotations of 137179 are 371791, 717913, 179137, 791371, 913717, 137179; all these are divisible by 1, 3, 7 and 9. %t A066484 ddQ[n_]:=Module[{idn=IntegerDigits[n]},DigitCount[n,10,0]==0 && Length[Union[idn]]>1 && And@@Flatten[Divisible[#,Union[idn]]&/@ (FromDigits/@Table[RotateRight[idn,i], {i,Length[idn]}])]]; Select[Range[10,200000],ddQ] (* _Harvey P. Dale_, Mar 30 2011 *) %o A066484 (Haskell) %o A066484 -- import Data.List (nub, inits, tails) %o A066484 a066484 n = a066484_list !! (n-1) %o A066484 a066484_list = filter h [1..] where %o A066484 h x = notElem '0' xs && length (nub xs) > 1 && %o A066484 all d (map read $ zipWith (++) %o A066484 (tail $ tails xs) (tail $ inits xs)) where xs = show x %o A066484 d u = g u where %o A066484 g v = v == 0 || mod u d == 0 && g v' where (v', d) = divMod v 10 %o A066484 -- _Reinhard Zumkeller_, Nov 29 2012 %o A066484 (PARI) select( {is_A066484(n,d=Set(digits(n)))= d[1] && #d>1 && (d[1]>1||d=d[^1]) && !for(i=0,logint(n,10),n=[1,10^logint(n,10)]*divrem(n,10);[n%x|x<-d]&&return)}, [1..10^5]) \\ _M. F. Hasler_, Jan 05 2020 %K A066484 base,nice,nonn %O A066484 1,1 %A A066484 Sudipta Das (juitech(AT)vsnl.net), Jan 02 2002 %E A066484 Corrected and extended by _Harvey P. Dale_, Mar 30 2011 %E A066484 Definition reworded by _M. F. Hasler_, Jan 05 2020