cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A066521 Primes p(k) such that the product of digits of p(k) equals the product of digits of k.

This page as a plain text file.
%I A066521 #15 Oct 17 2020 16:12:46
%S A066521 17,181,443,491,1163,2131,2143,2153,2621,4253,4621,7691,11483,11593,
%T A066521 11813,23819,26951,27179,32261,32443,33811,35171,35227,37643,41543,
%U A066521 42433,42443,44623,44917,45971,51473,54517,58193,61223,63131,64591
%N A066521 Primes p(k) such that the product of digits of p(k) equals the product of digits of k.
%C A066521 Numbers with product of digits=0, like prime(80) = 409, are not included. - _Harry J. Smith_, Feb 20 2010
%H A066521 Harry J. Smith, <a href="/A066521/b066521.txt">Table of n, a(n) for n = 1..1000</a>
%e A066521 181 is the 42nd prime and the product of digits of both is 8.
%t A066521 Select[Table[{n,Prime[n]},{n,6500}],DigitCount[#[[1]],10,0]==0 && Times@@ IntegerDigits[#[[1]]]==Times@@IntegerDigits[#[[2]]]&][[All,2]] (* _Harvey P. Dale_, Oct 17 2020 *)
%o A066521 (PARI) ProdD(x)= { local(p=1); while (x>9 && p>0, p*=x%10; x\=10); return(p*x) } { n=0; for (m=1, 10^10, p=prime(m); d=ProdD(m); if (ProdD(p) == d && d, write("b066521.txt", n++, " ", p); if (n==1000, return)) ) } \\ _Harry J. Smith_, Feb 20 2010
%Y A066521 Cf. A007954, A033548.
%K A066521 base,less,nonn
%O A066521 1,1
%A A066521 _Jason Earls_, Jan 05 2002