cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A066529 a(n) is the least index such that the least primitive root of the a(n)-th prime is n, or zero if no such prime exists.

This page as a plain text file.
%I A066529 #23 Feb 16 2025 08:32:45
%S A066529 1,2,4,0,9,13,20,0,0,65,117,566,88,173,85,0,64,5426,43,10217,80,474,
%T A066529 326,44110,0,1479,0,12443,1842,11662,775,0,23559,5029,6461,0,3894,
%U A066529 5629,15177,105242,14401,182683,9204,7103,5518399,23888,24092,42304997,0,1455704,27848,12107,14837,205691645,38451,12102037,39370,28902,57481,56379,90901,53468,5918705,0,732055,1738826,242495,265666,10523,388487,260680
%N A066529 a(n) is the least index such that the least primitive root of the a(n)-th prime is n, or zero if no such prime exists.
%C A066529 The corresponding primes are in A023048.
%C A066529 For n < 150, only a(108) is presently unknown. - _Robert G. Wilson v_, Jan 03 2006
%H A066529 Tomás Oliveira e Silva, <a href="http://sweet.ua.pt/tos/p-roots.html#avg">Least prime primitive root of prime numbers</a>
%H A066529 E. Weisstein, <a href="https://mathworld.wolfram.com/PrimitiveRoot.html">Primitive Roots</a>
%H A066529 <a href="/index/Pri#primes_root">Index entries for primes by primitive root</a>
%F A066529 a(n) = 0 iff n is a perfect power (A001597) > 1. - _Robert G. Wilson v_, Jan 03 2006
%F A066529 a(n) = min { k | A001918(k) = n } U {0} = A000720(A023048(n)) (or zero). - _M. F. Hasler_, Jun 01 2018
%e A066529 a(6) = 13 because Prime[13] = 41 is the least prime with least primitive root = 6
%t A066529 big = Table[ p = Prime[ n ]; PrimitiveRoot[ p ], {n, 1, 1000000} ]; Flatten[ Table[ Position[ big, n, 1, 1 ]/.{}-> 0, {n, 79} ] ] (* First load package NumberTheory`NumberTheoryFunctions` *)
%t A066529 (* first load package *) << NumberTheory`NumberTheoryFunctions` (* then do *) t = Table[0, {100}]; Do[a = PrimitiveRoot@Prime@n; If[a < 101 && t[[a]] == 0, t[[a]] = n], {n, 10^6}]; t (* _Robert G. Wilson v_, Dec 15 2005 *)
%Y A066529 Cf. A001918, A001122, A001123, A023048, A001597.
%K A066529 nonn
%O A066529 1,2
%A A066529 _Wouter Meeussen_, Jan 06 2002
%E A066529 Edited by _Dean Hickerson_, Jan 14 2002
%E A066529 Further terms from _Robert G. Wilson v_, Jan 03 2006