cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A066543 Number of spanning trees in the line graph of the product of two cycle graphs, each of order n, L(C_n x C_n).

This page as a plain text file.
%I A066543 #10 Oct 26 2023 08:32:31
%S A066543 782757789696,5976745079881894723584,
%T A066543 29514790517935282585600000000000000,
%U A066543 95296975201657487970461602120230307486331043840000,202142993853936783750487849288950496428731602354031286611374533246976
%N A066543 Number of spanning trees in the line graph of the product of two cycle graphs, each of order n, L(C_n x C_n).
%F A066543 a(n) = 2^(3*n^2-1) * A212800(n). - _Sean A. Irvine_, Oct 25 2023
%e A066543 NumberOfSpanningTrees(L(C_3 x C_3)) = 782757789696
%t A066543 NumberOfSpanningTrees[LineGraph[GraphProduct[Cycle[n], Cycle[n]]]] (* First load package DiscreteMath`Combinatorica` *)
%Y A066543 Cf. A212800.
%K A066543 nonn
%O A066543 3,1
%A A066543 _Roberto E. Martinez II_, Jan 07 2002
%E A066543 Edited by _Dean Hickerson_, Jan 14 2002
%E A066543 a(7) from _Sean A. Irvine_, Oct 25 2023