cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A066545 Number of spanning trees in the line graph of the product of two complete graph, each of order n, L(K_n x K_n).

This page as a plain text file.
%I A066545 #11 Jul 02 2025 19:36:07
%S A066545 4,782757789696,391497025772177207236260602767731880976449536,
%T A066545 79571717825565862744861159703491334416072984127575634790474236302905519522005340085288960000000000000000000000
%N A066545 Number of spanning trees in the line graph of the product of two complete graph, each of order n, L(K_n x K_n).
%C A066545 a(2) = 2^2, a(3) = 2^30 * 3^6, a(4) = 2^99 * 3^31, a(5) = 2^314 * 5^22. - _Gerald McGarvey_, Oct 20 2007
%e A066545 NumberOfSpanningTrees(L(K_2 x K_2)) = 4.
%t A066545 NumberOfSpanningTrees[LineGraph[GraphProduct[CompleteGraph[n], CompleteGraph[n]]]] (* First load package DiscreteMath`Combinatorica` *)
%K A066545 hard,nonn
%O A066545 2,1
%A A066545 _Roberto E. Martinez II_, Jan 07 2002
%E A066545 Edited by _Dean Hickerson_, Jan 14 2002