This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A066570 #20 Nov 02 2017 15:30:38 %S A066570 1,2,3,8,5,144,7,384,162,19200,11,1244160,13,4515840,1458000,10321920, %T A066570 17,75246796800,19,278691840000,1080203040,899245670400,23, %U A066570 16686729658368000,375000,663152807116800,7142567040,209964381084057600,29,1229978843118305280000000 %N A066570 Product of numbers <= n that have a prime factor in common with n. %C A066570 Empty product, 1, for n = 1. %C A066570 a(p) = p if p is a prime. %H A066570 T. D. Noe, <a href="/A066570/b066570.txt">Table of n, a(n) for n = 1..200</a> %F A066570 a(n) = n!/A001783(n). %F A066570 a(n) = Gauss_factorial(n, 1)/Gauss_factorial(n, n) (see A216919). - _Peter Luschny_, Oct 02 2012 %e A066570 a(7) = 7, a(9) = 3*6*9 = 162. %p A066570 A066570 := proc(n) local i; mul(i,i=remove(k->igcd(n,k)=1,[$1..n])) end: # _Peter Luschny_, Oct 11 2011 %t A066570 Table[Times @@ Select[Range[2, n], GCD[#, n] > 1 &], {n, 30}] (* _T. D. Noe_, Oct 04 2012 *) %o A066570 (Sage) %o A066570 def Gauss_factorial(N, n): return mul(j for j in (1..N) if gcd(j, n) == 1) %o A066570 def A066570(n): return Gauss_factorial(n, 1)/Gauss_factorial(n, n) %o A066570 [A066570(n) for n in (1..30)] # _Peter Luschny_, Oct 02 2012 %o A066570 (PARI) a(n) = prod(k=1, n, if (gcd(k, n) != 1, k, 1)); \\ _Michel Marcus_, Nov 02 2017 %Y A066570 Cf. A001783, A216919. %K A066570 nonn,easy %O A066570 1,2 %A A066570 _Amarnath Murthy_, Dec 19 2001