cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A066571 Number of sets of positive integers with arithmetic mean n.

This page as a plain text file.
%I A066571 #42 Aug 18 2024 20:14:11
%S A066571 1,3,9,31,117,479,2061,9183,42021,196239,931457,4480531,21793257,
%T A066571 107004891,529656765,2640160039,13241371629,66771501151,338333343825,
%U A066571 1721768732423,8796192611917,45096680384635,231945566136129,1196461977291959,6188390166782849
%N A066571 Number of sets of positive integers with arithmetic mean n.
%C A066571 From _Franklin T. Adams-Watters_, Sep 13 2011: (Start)
%C A066571 If we use nonnegative integers instead of positive integers, we get this sequence shifted left (i.e., with offset 0).
%C A066571 The largest number that can be included in set of positive integers with mean n is the triangular number n*(n+1)/2 = A000217(n).
%C A066571 All values are odd. Sets including n are paired with the same set with n removed, with exception of {n}, as the empty set has no average.
%C A066571 (End)
%H A066571 Martin Fuller, <a href="/A066571/b066571.txt">Table of n, a(n) for n = 1..200</a>
%F A066571 Sum of coefficient of t^k x^(n*k) in Product_{i=1..n*k} (1+t*x^i) for k <= 2*n-1. - _N. J. A. Sloane_
%F A066571 From _Martin Fuller_, Sep 14 2023: (Start)
%F A066571 Constant term in formal Laurent series (Product_{i=1-n..n*(n-1)/2} (1+x^i)) - 1.
%F A066571 a(n) = (Sum_{i=0..n*(n-1)/2} A053632(n-1,i)*A000009(i))*2-1. (End)
%e A066571 a(2) = 3 as there are three sets viz. {2}, {1,3}, {1,2,3}, each of which has the arithmetic mean 2.
%e A066571 a(3) = 9: the nine sets are {3}, {1, 5}, {2, 4}, {1, 2, 6}, {1, 3, 5}, {2, 3, 4}, {1, 2, 3, 6}, {1, 2, 4, 5}, {1, 2, 3, 4, 5}.
%p A066571 g := k->expand(mul(1+t*x^i,i=1..k)); A066571 := proc(n) local k; add(coeff(coeff(g(n*k),t,k),x,n*k),k=1..2*n-1); end;
%t A066571 g[k_] := Expand[Product[1 + t*x^i, {i, 1, k}]]; a[n_] := Sum[Coefficient[ Coefficient[g[n*k], t, k], x, n*k], {k, 1, 2*n - 1}]; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 1, 10}] (* _Jean-François Alcover_, Feb 10 2018, translated from Maple *)
%o A066571 (Haskell)
%o A066571 a066571 n = f [1..] 1 n 0 where
%o A066571    f (k:ks) l nl x
%o A066571      | y > nl  = 0
%o A066571      | y < nl  = f ks (l + 1) (nl + n) y + f ks l nl x
%o A066571      | otherwise = if y `mod` l == 0 then 1 else 0
%o A066571      where y = x + k
%o A066571 -- _Reinhard Zumkeller_, Feb 13 2013
%Y A066571 Cf. A066572, A000217.
%Y A066571 Cf. A072701, A164283.
%K A066571 nonn,nice
%O A066571 1,2
%A A066571 _Amarnath Murthy_, Dec 19 2001
%E A066571 Corrected and extended by _N. J. A. Sloane_, Dec 19 2001
%E A066571 More terms from _Naohiro Nomoto_, Jun 19 2002
%E A066571 More terms from _David Wasserman_, Sep 10 2002
%E A066571 More terms from _Martin Fuller_, Sep 14 2023