cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A066572 Number of sets of distinct positive integers with geometric mean n.

This page as a plain text file.
%I A066572 #23 Aug 18 2024 21:55:36
%S A066572 1,3,3,9,3,255,3,31,9,255,3,48891,3,255,255,117,3,48891,3,48891,255,
%T A066572 255,3,12896331,9,255,31,48891,3,329166915027,3,479,255,255,255,
%U A066572 668187863,3,255,255,12896331,3,329166915027,3,48891,48891,255,3,3981060137,9,48891,255,48891,3,12896331,255,12896331,255,255,3
%N A066572 Number of sets of distinct positive integers with geometric mean n.
%C A066572 a(m) = a(n) if m and n have the same factorization structure.
%C A066572 a(60) is approximately 9.3492e20. - _Franklin T. Adams-Watters_, Jun 09 2006
%C A066572 Observe that for any prime p, a(p^k) = A066571(k+1) and the largest set is the powers 0..2k of p.
%H A066572 Martin Fuller, <a href="/A066572/b066572.txt">Table of n, a(n) for n = 1..359</a>
%H A066572 Martin Fuller, <a href="/A066572/a066572.txt">Python program</a>
%e A066572 a(2) = 3 as there are three sets viz. {2}, {1,4}, {1,2,4}, each of which has geometric mean 2.
%e A066572 a(4) = 9: the nine sets are {4}, {1, 16}, {2, 8}, {1, 4, 16}, {2, 4, 8}, {1, 2, 32}, {1, 2, 4, 32}, {1, 2, 8, 16}, {1, 2, 4, 8, 16}.
%t A066572 (* Recomputation using existing values and prime signatures *)
%t A066572 a[1] = 1; a[n_] := Switch[ FactorInteger[n][[All, 2]] // Sort, {1}, 3, {2}, 9, {3}, 31, {4}, 117, {1, 1}, 255, {5}, 479, {1, 2}, 48891, {1, 3}, 12896331, {2, 2}, 668187863, {1, 4}, 3981060137, {1, 1, 1}, 329166915027, _, 0]; Table[ a[n], {n, 1, 59}] (* _Jean-François Alcover_, Sep 04 2013 *)
%Y A066572 Cf. A066571.
%K A066572 nonn,nice
%O A066572 1,2
%A A066572 _Amarnath Murthy_, Dec 19 2001
%E A066572 More terms from _Naohiro Nomoto_, Dec 26 2001
%E A066572 More terms from _Franklin T. Adams-Watters_, Jun 09 2006
%E A066572 More terms from _Jean-François Alcover_, Sep 04 2013