cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A066620 Number of unordered triples of distinct pairwise coprime divisors of n.

This page as a plain text file.
%I A066620 #32 May 02 2021 20:20:35
%S A066620 0,0,0,0,0,1,0,0,0,1,0,2,0,1,1,0,0,2,0,2,1,1,0,3,0,1,0,2,0,7,0,0,1,1,
%T A066620 1,4,0,1,1,3,0,7,0,2,2,1,0,4,0,2,1,2,0,3,1,3,1,1,0,13,0,1,2,0,1,7,0,2,
%U A066620 1,7,0,6,0,1,2,2,1,7,0,4,0,1,0,13,1,1,1,3,0,13,1,2,1,1,1,5,0,2,2,4,0,7,0
%N A066620 Number of unordered triples of distinct pairwise coprime divisors of n.
%C A066620 a(m) = a(n) if m and n have same factorization structure.
%D A066620 Amarnath Murthy, Decomposition of the divisors of a natural number into pairwise coprime sets, Smarandache Notions Journal, vol. 12, No. 1-2-3, Spring 2001.pp 303-306.
%H A066620 Antti Karttunen, <a href="/A066620/b066620.txt">Table of n, a(n) for n = 1..10000</a>
%F A066620 In the reference it is shown that if k is a squarefree number with r prime factors and m with (r+1) prime factors then a(m) = 4*a(k) + 2^k - 1.
%F A066620 a(n) = (tau(n^3)-3*tau(n)+2)/6. - _Vladeta Jovovic_, Nov 27 2004
%e A066620 a(24) = 3: the divisors of 24 are 1, 2, 3, 4, 6, 8, 12 and 24. The triples are (1, 2, 3), (1, 2, 9), (1, 3, 4).
%e A066620 a(30) = 7: the triples are (1, 2, 3), (1, 2, 5), (1, 3, 5), (2, 3, 5), (1, 3, 10), (1, 5, 6), (1, 2, 15).
%t A066620 Table[Length[Select[Subsets[Divisors[n],{3}],CoprimeQ@@#&]],{n,100}] (* _Gus Wiseman_, Apr 28 2021 *)
%o A066620 (PARI) A066620(n) = (numdiv(n^3)-3*numdiv(n)+2)/6; \\ After Jovovic's formula. - _Antti Karttunen_, May 27 2017
%o A066620 (Python)
%o A066620 from sympy import divisor_count as d
%o A066620 def a(n): return (d(n**3) - 3*d(n) + 2)/6 # _Indranil Ghosh_, May 27 2017
%Y A066620 Positions of zeros are A000961.
%Y A066620 Positions of ones are A006881.
%Y A066620 The version for subsets of {1..n} instead of divisors is A015617.
%Y A066620 The non-strict ordered version is A048785.
%Y A066620 The version for pairs of divisors is A063647.
%Y A066620 The non-strict version (3-multisets) is A100565.
%Y A066620 The version for partitions is A220377 (non-strict: A307719).
%Y A066620 A version for sets of divisors of any size is A225520.
%Y A066620 A000005 counts divisors.
%Y A066620 A001399(n-3) = A069905(n) = A211540(n+2) counts 3-part partitions.
%Y A066620 A007304 ranks 3-part strict partitions.
%Y A066620 A014311 ranks 3-part compositions.
%Y A066620 A014612 ranks 3-part partitions.
%Y A066620 A018892 counts unordered pairs of coprime divisors (ordered: A048691).
%Y A066620 A051026 counts pairwise indivisible subsets of {1..n}.
%Y A066620 A337461 counts 3-part pairwise coprime compositions.
%Y A066620 A338331 lists Heinz numbers of pairwise coprime partitions.
%Y A066620 Cf. A007360, A023022, A084422, A276187, A282935, A305713, A337563, A337605, A343652, A343655.
%K A066620 nonn
%O A066620 1,12
%A A066620 K. B. Subramaniam (kb_subramaniambalu(AT)yahoo.com) and _Amarnath Murthy_, Dec 24 2001
%E A066620 More terms from _Vladeta Jovovic_, Apr 03 2003
%E A066620 Name corrected by _Andrey Zabolotskiy_, Dec 09 2020
%E A066620 Name corrected by _Gus Wiseman_, Apr 28 2021 (ordered version is 6*a(n))