cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A066624 Number of 1's in binary expansion of parts in all partitions of n.

This page as a plain text file.
%I A066624 #15 Dec 03 2022 13:06:13
%S A066624 0,1,3,7,13,23,41,65,102,156,234,340,495,697,982,1359,1864,2523,3408,
%T A066624 4536,6022,7918,10365,13457,17423,22380,28666,36498,46318,58466,73617,
%U A066624 92221,115236,143402,177984,220086,271524,333810,409490,500804,611149,743728,903296
%N A066624 Number of 1's in binary expansion of parts in all partitions of n.
%H A066624 Alois P. Heinz, <a href="/A066624/b066624.txt">Table of n, a(n) for n = 0..8000</a>
%e A066624 For n = 3: 11 = 10+1 = 1+1+1 [binary expansion of partitions of 3]. a(3) = (two 1's) + (two 1's) + (three 1's), so a(3) = 7.
%t A066624 << DiscreteMath`Combinatorica`; Table[Count[Flatten[IntegerDigits[Partitions[n], 2]], 1], {n, 0, 50}]
%t A066624 Table[Total[Flatten[IntegerDigits[#,2]&/@IntegerPartitions[n]]],{n,0,50}] (* _Harvey P. Dale_, Mar 29 2022 *)
%Y A066624 Cf. A000120, A000070, A347060.
%K A066624 easy,nonn,base
%O A066624 0,3
%A A066624 _Naohiro Nomoto_, Jan 09 2002
%E A066624 More terms from _Vladeta Jovovic_ and _Robert G. Wilson v_, Jan 11 2002