This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A066657 #12 Aug 23 2022 13:08:24 %S A066657 1,1,1,2,1,2,3,1,2,3,5,1,1,3,5,7,1,2,3,5,7,8,1,2,3,5,7,8,11,1,2,3,5,7, %T A066657 8,11,13,1,1,1,5,7,4,11,13,17,1,2,3,5,7,8,11,13,17,18,1,2,3,5,7,8,11, %U A066657 13,17,18,19,1,2,3,5,7,8,11,13,17,18,19,23,1,2,3,5,7 %N A066657 Numerators of rational numbers produced in order by A066720(j)/A066720(i) for i >= 1, 1 <= j <i. %C A066657 Does every rational number in range (0,1) appear? %C A066657 a(0) = 1 by convention. %H A066657 Reinhard Zumkeller, <a href="/A066657/b066657.txt">Table of n, a(n) for n = 0..10000</a> %e A066657 Sequence of rationals begins 1, 1/2, 1/3, 2/3, 1/5, 2/5, 3/5, 1/7, 2/7, 3/7, 5/7, 1/8, 1/4, 3/8, 5/8, 7/8, 1/11, 2/11, ... %t A066657 nmax = 14; %t A066657 b[1] = 1; F = {1}; %t A066657 For[n = 2, n <= nmax, n++, %t A066657 For[k = b[n-1]+1, True, k++, Fk = Join[{k^2}, Table[b[i]*k, {i, 1, n-1}]] // Union; If[Fk~Intersection~F == {}, b[n] = k; F = F~Union~Fk; Break[]]]]; %t A066657 Join[{1}, Table[b[k]/b[n], {n, 1, nmax}, {k, 1, n-1}]] // Flatten // Numerator (* _Jean-François Alcover_, Aug 23 2022, after _Robert Israel in A066720 *) %o A066657 (Haskell) %o A066657 import Data.List (inits) %o A066657 import Data.Ratio ((%), numerator) %o A066657 a066657 n = a066657_list !! n %o A066657 a066657_list = map numerator %o A066657 (1 : (concat $ tail $ zipWith (\u vs -> map (% u) vs) %o A066657 a066720_list (inits a066720_list))) %o A066657 -- _Reinhard Zumkeller_, Nov 19 2013 %Y A066657 Cf. A066658 (denominators), A066720. %K A066657 nonn,frac,nice %O A066657 0,4 %A A066657 _N. J. A. Sloane_, Jan 18 2002