This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A066664 #11 Nov 06 2013 01:43:29 %S A066664 4,6,8,10,12,14,18,22,24,26,34,38,46,58,60,62,74,82,86,94,106,118,122, %T A066664 134,142,146,158,166,178,194,202,206,214,218,226,254,262,274,278,298, %U A066664 302,314,326,334,346,358,362,382,386,394,398,422,446,454,458,466,478 %N A066664 Composite numbers n whose divisors less than or equal to sqrt(n) are consecutive, from 1 up to some number k. %C A066664 The sequence consists of all numbers of the form 2p with p prime, along with 8, 12, 18, 24 and 60. See sketch of proof in A066522. %H A066664 Reinhard Zumkeller, <a href="/A066664/b066664.txt">Table of n, a(n) for n = 1..1000</a> %t A066664 a = {}; Do[ If[ !PrimeQ[n], k = Select[ Divisors[n], # <= Sqrt[n] &]; If[ Last[k] == Length[k], a = Append[a, n]]], {n, 1, 500} ]; a %t A066664 dQ[n_]:=!PrimeQ[n]&&Union[Differences[Select[Divisors[n],#<=Sqrt[n]&]]] == {1}; Select[Range[500],dQ] (* _Harvey P. Dale_, Nov 06 2013 *) %o A066664 (Haskell) %o A066664 a066664 n = a066664_list !! (n-1) %o A066664 a066664_list = filter ((== 0) . a010051) $ tail a066522_list %o A066664 -- _Reinhard Zumkeller_, Nov 14 2011 %Y A066664 These are the composite members of A066522: intersection of A002808 and A066522. %Y A066664 Subsequence: A100484. %K A066664 nice,nonn,easy %O A066664 1,1 %A A066664 _Robert G. Wilson v_, Jan 07 2002