A244046 Decimal expansion of the maximal width of a Reuleaux triangle avoiding all vertices of the integer square lattice.
1, 5, 4, 4, 9, 4, 1, 7, 0, 0, 3, 7, 1, 5, 9, 3, 1, 5, 4, 1, 8, 5, 0, 9, 6, 8, 3, 8, 4, 7, 0, 6, 2, 6, 5, 8, 0, 2, 4, 7, 3, 6, 0, 8, 2, 8, 4, 0, 0, 6, 7, 4, 1, 7, 4, 0, 8, 0, 5, 1, 5, 9, 4, 9, 4, 3, 7, 0, 0, 9, 9, 5, 7, 4, 2, 3, 0, 0, 6, 9, 8, 6, 0, 6, 6, 9, 0, 7, 3, 8, 5, 0, 8, 0, 6, 1, 7, 9, 7, 3, 6, 3, 9, 3, 7
Offset: 1
Examples
1.54494170037159315418509683847062658...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 8.10 Reuleaux triangle constants, p. 515.
Links
- Eric Weisstein's MathWorld, Reuleaux Triangle
- Wikipedia, Reuleaux Triangle
Programs
-
Mathematica
w = Root[4*x^6 - 12*x^5 + x^4 + 22*x^3 - 14*x^2 - 4*x + 4, x, 3]; RealDigits[w, 10, 105] // First
Formula
Smallest positive root of 4*x^6 - 12*x^5 + x^4 + 22*x^3 - 14*x^2 - 4*x + 4.
Comments