cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A066674 Least number m such that phi(m) = A000010(m) is divisible by the n-th prime.

Original entry on oeis.org

3, 7, 11, 29, 23, 53, 103, 191, 47, 59, 311, 149, 83, 173, 283, 107, 709, 367, 269, 569, 293, 317, 167, 179, 389, 607, 619, 643, 1091, 227, 509, 263, 823, 557, 1193, 907, 1571, 653, 2339, 347, 359, 1087, 383, 773, 3547, 797, 2111, 2677, 5449, 2749, 467
Offset: 1

Views

Author

Labos Elemer, Dec 19 2001

Keywords

Comments

All terms seem to be primes of the form a(n) = k*prime(n)+1 for some k.
Is this a duplicate of A035095? - R. J. Mathar, Dec 13 2008
For the first 5*10^6 terms, a(n) = A035095(n). - Donovan Johnson, Oct 21 2011
Comments on the relationship between A035095, A066674, A125878, added by N. J. A. Sloane, Jan 07 2013: (Start)
Let a(n) = A066674(n), b(n) = A035095(n), c(n) = A125878(n).
It is immediate from the definitions that a(n) <= b(n) and a(n) <= c(n).
Bjorn Poonen (Jan 06 2013) makes the following observations:
1) A prime p divides phi(m) if and only if p^2 | m or p | q-1 for some prime q | m. Thus the smallest m for p is either p^2 or the smallest prime q = 1 (mod p). In other words, a(n) = min(b(n),p(n)^2).
2) In particular, the m in the definition of a(n) is at most p(n)^2, so phi(m)/p(n) < p(n), so p(n) is the largest prime dividing phi(m), and phi(m)/(2 p(n)) < p(n)/2 < p(n-1), so p(n-1) does not divide phi(m)/2.
Thus c(n) = a(n).
Further comments from Eric Bach, Jan 07 2013: (Start)
As others have pointed out, the possible equivalence of a(n) and b(n) is basically the question of how quickly the least prime q == 1 mod p grows, as a function of p. In particular, if q < p^2, the two sequences are the same.
Here are some remarks connected with this.
1. There are probabilistic arguments suggesting that q = O(p (log p)^2). See Heath-Brown (1978), Wagstaff (1979), Bach and Huelsbergen (1993). Using the sieve of Eratosthenes, I found no exceptions to q < p^2 below p = 1254767. So it seems likely that a(n) and b(n) are the same.
2. If ERH holds, then q = O(p log p)^2, see Heath-Brown (1990), (1992). Explicitly, on the same hypothesis, q < 2(p log p)^2, see Bach and Sorenson (1996).
3. By Linnik's theorem, q = O(p^c) for some c > 0. This is unconditional, but the best known value of c, equal to 5.18 -- see Xylouris (2011) -- is nowhere near 2. Heath-Brown (1992) mentions the conjecture (generalized to Linnik's theorem) that q <= p^2. If true, a(n) and b(n) are identical, since p^2 cannot be 1 mod p. (End)
Don Reble (Jan 07 2013) observes that A074884 and A117673 are related to these questions.
Summary: A066674 and A125878 are the same, and A035095 is probably also the same, but this is an open question.
(End)

References

  • E. Bach and J. Shallit, Algorithmic Number Theory, Vol. 1: Efficient Algorithms, MIT Press, Cambridge, MA, 1996.

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{m = p = Prime@ n}, While[ Mod[ EulerPhi@ m, p] != 0, m += 2]; m]; f[1] = 3; Array[f, 60] (* Robert G. Wilson v, Dec 27 2014 *)

Formula

a(n) = min{m : phi(m) = 0 mod prime(n) = 0}.

Extensions

a(2) corrected by R. J. Mathar, Dec 13 2008