cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A066699 Numbers k such that binomial(2k,k)+1 is prime.

This page as a plain text file.
%I A066699 #20 Jul 02 2024 14:23:03
%S A066699 1,2,4,7,12,19,22,38,46,62,68,72,84,166,184,214,340,348,445,517,692,
%T A066699 817,1316,1381,2554,2713,5261,6209,6735,7920,8207,8772,9530,13075,
%U A066699 13302,13405,15002,16371,19346,24151,26555,28188,29235,33536,43338,44048,65576,65930,68666,78285
%N A066699 Numbers k such that binomial(2k,k)+1 is prime.
%C A066699 a(45) > 40000. All the primes corresponding to terms up to a(44) have been certified by the PFGW software performing the Brillhart-Lehmer-Selfridge N-1 test. - _Giovanni Resta_, Apr 05 2017
%C A066699 a(51) > 100000. - _Robert Price_, Jul 02 2024
%D A066699 Aigner and Ziegler. Proofs from the Book, 2nd edition. Springer-Verlag, 2001.
%e A066699 C(4,2) + 1 = 7, a prime; so 2 is a term of the sequence.
%t A066699 Do[If[PrimeQ[Binomial[2 a, a]+1], a >>>"C:\prime.txt"],{a,1,20000}] (* _Ed Pegg Jr_ *)
%t A066699 Select[Range[1, 5 * 10^2], PrimeQ[Binomial[2* #, # ] + 1] &]
%o A066699 (PARI) is(n)=isprime(binomial(2n,n)+1) \\ _Charles R Greathouse IV_, May 15 2013
%Y A066699 Cf. A085793, A066726.
%K A066699 nonn
%O A066699 1,2
%A A066699 _Joseph L. Pe_, Jan 14 2002
%E A066699 More terms (not certified primes) from _Jason Earls_ and _Robert G. Wilson v_, Jan 15 2002
%E A066699 More terms from _Ed Pegg Jr_, Sep 10 2003
%E A066699 a(40)-a(44) from _Giovanni Resta_, Apr 05 2017
%E A066699 a(45)-a(50) from _Robert Price_, Jul 02 2024